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Abstract—In this paper, we investigate pulse wave
propagation and pulse wave interaction phenomenon in a
large number of coupled van der Pol oscillator lattice with
hard-type nonlinearity. We demonstrate numerically that
there exists a pulse wave which propagates with a constant
speed, when ε (= a parameter which shows the degree of
nonlinearity) exceeds a certain critical value. Moreover,
We find that collision of these pulse waves result in various
phenomena such as repulsion, unification, disappearance,
standing waves, etc. depending on the value of ε.

1. Introduction

Mutually coupled oscillators have been investigated by
many authors for many decades in various areas of physics,
mathematics and biology[1]-[3]. In particular, wave propa-
gation phenomenon in a large number of coupled oscillator
systems have been reported[4]-[6]. They are important not
only in a pure nonlinear science viewpoint but also from the
viewpoint of various applications, one of which includes
biological information processing[7].

In this paper, we investigate wave propagation phe-
nomenon observed in coupled van der Pol oscillator lat-
tice with hard-type nonlinearity. The dynamics for weak
nonlinear cases have been almost elucidated via averag-
ing method[8]. But its dynamics for strong nonlinear case
seems to be unexplored. Namely, for small value of ε (=
a parameter showing the degree of nonlinearity), the be-
havior of this oscillator lattice obeys averaging theory, and
only standing wave patterns are possible. However, when ε
exceeds a certain critical value, there exist various kinds
of traveling pulse waves. Yamauchi et al. investigated
wave propagation phenomenon in an inductance-coupled
van der Pol oscillator lattice with soft nonlinearity[4]. They
demonstrated various propagating “phase” waves for ε be-
yond a certain critical value. In contrast, the pulse waves
in our case are based on “oscillation amplitude”, namely
several adjacent oscillators forming a pulse oscillate with
large amplitudes and others show no oscillation. The be-
havior after collision of two pulses strongly depends on the
value of ε; i.e., repulsion, unification and disappearance,
etc. can be seen.

(a) Coupled van der Pol oscillator lattice

(b) A van der Pol oscillator

Figure 1: An inductance-coupled van der Pol oscillator lat-
tice

2. Circuit model

Figures 1 (a) and (b) present the inductance-coupled
van der Pol oscillator lattice we adopt. Assuming the
hard-type nonlinearity for NC, i.e., iNC = g1V − g3V3 +

g5V5, g1, g3, g5 > 0 in Fig.1(b), the circuit equation
can be written by the following autonomous system after
normalization[9]:

ẋ1 = y1
ẏ1 = −ε(1− βx2

1 + x4
1)y1 − (1+ α)x1 + αx2

ẋi = yi

ẏi = −ε(1− βx2
i + x4

i )yi − (1+ α)xi + α(xi−1 + xi+1)
ẋn = yn

ẏn = −ε(1− βx2
n + x4

n)yn − (1+ α)xn + αxn−1

, i = 2, 3, · · · , n − 1, (· = d/dτ, ·· = d2/dτ2)

(1)

where n is the number of coupled oscillators. x j denotes the
normalized output voltage of the j-th oscillator, y j denotes
its derivative.

2007 International Symposium on Nonlinear Theory and its
Applications
NOLTA'07, Vancouver, Canada, September 16-19, 2007

- 457 -



(a) t = 300

(b) t = 800

(c) t = 1300

(d) t = 1800

Figure 2: Snapshots of typical pulse wave propagation for
α = 0.1, β = 3.1 and ε = 0.36. Initial condition is x15(0) =
2.01, x16(0) = 1.99 and other variables are zero.

The parameter ε (> 0) shows the degree of nonlinearity.
The parameter α (0 � α � 1) is a coupling factor, namely
α = 1 means maximum coupling, and α = 0 means no cou-
pling. The parameter β controls amplitude of oscillation.

3. Wave propagation phenomenon

Pulse wave propagation phenomenon typically observed
in Eq.(1) is depicted in Fig.2 for n = 28.1 Each figure

1All numerical integrations are carried out by the fourth-order Runge-
Kutta method with step size = 0.01.

Figure 3: A bird’s-eye view plot for typical pulse wave
propagation

shows the snapshot at a certain time t. Here, we set the pa-
rameters as : α = 0.1, β = 3.1 and ε = 0.36. It is noted that
main body of the propagating pulse wave consists of sev-
eral (almost 6) adjacent oscillators with large amplitude.
The pulse wave propagation phenomenon can be observed
when we set the initial condition of the x-component of two
adjacent oscillators approximately to 2.0 and other vari-
ables (xi, yi) to zero. In our case, we set the initial condition
of x15(0) to 2.01 and x16(0) to 1.99 and other variables to
zero. Figure 3 presents a bird’s-eye view plot of this pulse
wave propagation where the absolute value of xi is plot-
ted. It is clearly seen that a pulse wave propagates with a
constant speed. In this case, initial propagating direction is
from right to left as drawn by an arrow in Fig.2(a). Which
direction a pulse wave propagates is determined by initial
condition. For example, when we set the initial condition
of x15(0) to 1.99 and x16(0) to 2.01 and all other variables
to zero, the propagating direction of pulse wave is from left
to right. Although we take n = 28 throughout this paper,
quantitatively the same phenomenon can be observed for
n = 100. In this paper, we fix β = 3.1 as well as α = 0.1,
and we employ ε as changing parameter as shown in the
next section.

4. Interaction among pulse waves

When we give large initial values to many oscillators at
the same time, multiple pulse waves will emerge. These
waves include propagating pulse waves, standing waves
with periodic and quasi-periodic oscillation, etc. They col-
lide at a certain time and start to interact with each other.
In this section, we focus on the interaction among various
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propagating and standing waves.

(a) ε = 0.37 (b) ε = 0.36

(c) ε = 0.35 (d) ε = 0.34

(e) ε = 0.33

Figure 4: Bird’s-eye view plots for interaction among two
propagating waves for various values of ε for α = 0.1, β =
3.1. Initial condition is x1(0) = x2(0) = x27(0) = x28(0) =
2.0 and other variables are zero.

For simplicity, we show interaction among two
pulse waves. When we set the initial condition of
x1(0), x2(0), x27(0) and x28(0) (, namely both ends of os-
cillator lattice) to 2.0 and other variables to zero, we ob-
serve interesting phenomena sensitive to the ε value. Fig-
ures 4(a)-(e) present some of the interaction phenomena ac-
cording to various ε with initial conditions as stated above.
In the following, we will explain the characteristics of each
dynamics.

(a) When two pulse waves propagating in opposite di-
rection collide, they repel in a symmetric manner for
ε = 0.37.

Figure 5: Quasi-periodic oscillations of the standing wave
shown in Fig.4(e)

(b) Two pulse waves propagating in opposite direction
pass through each other for ε = 0.36.

(c) After two pulse waves propagating in opposite direc-
tion collide, there exist two standing waves consisting
of time-periodic oscillation for ε = 0.35. Each cor-
responding oscillator in the standing pulse waves is
synchronized with the same phase.

(d) Two propagating waves annihilate after collision for
ε = 0.34.

(e) There exists only one standing wave after collision for
ε = 0.33. Each oscillator in the sanding pulse wave
presents quasi-periodic oscillation as shown in Fig.5.
Hence, this standing wave is different from that of case
(c).

From our computer simulation, it seems that the same re-
sults as above can be observed for even arbitrary number
of coupled oscillator lattice. In fact, we confirm the same
results for the 100 coupled oscillator lattice. However, for
odd number of coupled oscillator lattice, we only observe
case (a) irrespective of the value of ε. We confirm this for
the 27 and 99 coupled oscillator lattices.

Next, we show another type of pulse wave interac-
tion among two waves. Figure 6 presents the inter-
action phenomenon observed from initial condition of
x1(0), x2(0), x15(0), x16(0) and x17(0) to 2.0 and other vari-
ables to zero for ε = 0.36. The dynamics is as follows.
There are two pulse waves: one is a traveling pulse wave
propagating from left margin to right. The other is a stand-
ing pulse wave around the 16th oscillator position (= orig-
inal position) as shown in Fig.7(a). When they collide,
the standing pulse wave slips away and stays around a
12th oscillator position (= moved position) as shown in
Fig.7(b). And the reflected traveling pulse wave hits the
standing pulse wave again, then the standing pulse wave
moves to original position. Interestingly this phenomenon
is repeated endlessly. We call this phenomenon the “stand-
ing wave slip” phenomenon.
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Figure 6: A bird’s-eye view plot for the standing wave slip
for α = 0.1, β = 3.1 and ε = 0.36. Initial condition is
x1(0) = x2(0) = x15(0) = x16(0) = x17(0) = 2.0 and other
variables are zero.

5. Conclusions

We investigate the wave propagation phenomenon and
its interaction observed in an inductance-coupled van der
Pol oscillator lattice with hard-type nonlinearity. These
wave propagation phenomena continuously exist, and its
interactions present the rich interesting behaviors such as
repulsion, unification and disappearance, etc. As a future
problem, we will investigate this system more in detail.
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