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Abstract—We investigate the mechanism of oscillatory
solutions in coupled even number of neurons as a ring. In
a time domain, these oscillatory solutions show switching
patterns between positive and negative values. We calcu-
late the distance between the oscillatory solutions and UPS
(Unstable Periodic Solution) generated the Hopf bifurca-
tion on the sections of xi = 0. This result shows that these
patterns are formed by the trajectories closing to UPS and
staying around it for a long time. We also confirm this phe-
nomenon in a simple electrical circuit using inverting oper-
ational amplifiers.

1. Introduction

Systems of coupled oscillators have been widely studied
as models of information processing in the brain [1], ani-
mal locomotion [2], generating nonlinear phenomena such
as chaotic itineracy [3] and on-off intermittency [4, 5], and
so on. In particular, we are interested in neuron models, be-
cause many investigators confirm that oscillatory dynamics
of neural activity and its synchronization play an important
role in information processing in the brain.

We consider unidirectionally coupled ring networks of
neurons with inhibitory connections. It is said that the es-
sential dynamics of some biological central pattern gener-
ators can be captured by a model consisting of N neurons
connected in a ring structure [6–8]. In such a system, it is
known that when a number of inhibitory neurons is odd
and even, the system has stable and unstable oscillatory
modes, respectively [9,10]. However, we found out the ex-
istence of oscillatory modes as a quasi-attractor in a system
of even inhibitory neurons [11]. In the previous study [12],
we investigated the relationship between these oscillatory
modes and the unstable periodic solutions(UPS) generated
by the Hopf bifurcations in a large number of neurons. In
this study, we show that the trajectories of these oscillatory
modes approach the UPS and stay around it for a long time
even in a small number of neurons. We also confirm this
phenomenon in a simple electrical circuit using inverting
operational amplifiers.

2. System Equation

The system equation is described as

τ
dxi

dt
= −xi − c f (xi+1) (1)
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(a) UPS.
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(b) Short(red) and long(blue) transient oscillatory modes from dif-
ferent initial states.

Figure 1: (a)Waveforms of UPS and (b)transient oscillatory
modes observed in Eq. (1) for n = 12 and c = 1.4.

(i = 1, 2, · · · , n, xn+1 ≡ x1)

where xi is the state of neuron i, n is the number of neu-
rons(only even number is considered), τ is the time con-
stant fixed as 1.0, c is the coupling coefficient and f (x) is
the output function given by tan−1(x). This type of neu-
ron model is commonly used for controlling locomotion
[13–15] and describing oscillatory phenomena [10,16,17].

We consider c > 0 in Eq. (1), thus Eq. (1) consists of
only inhibitory neurons.

3. Results

3.1. Properties (even n)

The system has a stable equilibrium point at the ori-
gin for c < 1. At c = 1 the pitchfork bifurcation of
the equilibrium point occurs and two stable equilibrium
points, namely (x1, x2, · · ·, xn) = (A,−A, · · · ,−A) and
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(b) Oscillatory solution I (long transient state).
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(c) Oscillatory solution II (short transient state).

Figure 2: Temporal switching patterns for c = 1.4 and
n = 12 in Eq. (1). When the sign of xi is changed, we
put black and white for negative and positive values of xi,
respectively.

(−A, A, · · · , A), are generated. The unstable equilibrium
point (the origin) meets several Hopf bifurcations for c > 1.
Figure 1(a) shows the waveform of an unstable periodic so-
lution(UPS) generated by the first Hopf bifurcation. This
UPS is one-dimensionally unstable, however, stably ob-
served in the space of xi = −xi+n/2 [12].

Note that for c > 1 only two equilibrium points which
are symmetry with respect to the origin are attractors.
However, we observe oscillatory solutions for sufficiently
large n [11]. In this study, we investigate the mechanism
of generating such oscillatory solutions for small number
of neurons (n = 12). In this case, although the solutions
go to one of quiescence attractors in finite time(Fig. 1(b)),
we consider that the mechanism of generating oscillatory
solutions is the same as the case of large n.

3.2. Computer Simulation (n=12)

The first and second Hopf bifurcation of the origin occur
at c ' 1.155 and c ' 2.0, respectively. Thus, we fix the
value of c as 1.4 to study the influence of only the first
Hopf bifurcation on the oscillatory modes.

Figure 2(a) shows a temporal pattern for the UPS gen-
erated by the Hopf bifurcation. We put initial states as
xi = −xi+6 (i = 1, · · · , 6), therefore the UPS is stable in
this invariant subspace. The temporal pattern is symmetri-
cal black and white. Figure 3(a) shows a symbolized and
enlarged temporal pattern in some time interval. We use
the following rule:

S (xi) =
{

0 if xi < 0
1 if xi ≥ 1 (2)

From this figure we can see that the switching the signs
of state variables occur simultaneously at two neurons and
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(a) UPS.
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(b) Oscillatory solution.
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(c) End of oscillatory solution.

Figure 3: Temporal pattern using symbols 1 and 0 for pos-
itive and negative values of xi, respectively. We shade the
symbols either S (xi(t)) = S (xi+1(t)) or S (xi(t)) , S (xi(t −
1)).

two propagations proceed at the same speed. On the other
hand, the temporal black and white patterns of oscilla-
tory solutions (Figs. 2(b) and (c)) are asymmetrical and the
change of the sign occurs for only one neuron at any time
(Fig. 3(b)). Finally(Fig. 3(c)), switching rules are broken
and the shaded pair approaches each other, and 0 and 1 are
alternatively lined. Therefore the trajectory goes to one of
quiescence attractors immediately.

We calculate the sum d of the distance on the sections
of xi = 0 (i = 1, 2, · · · , 12). More precisely, when the tra-
jectories cross the sections from negative to positive value,
we calculate the Euclidean distance between the oscilla-
tory mode and the UPS and add them for all i′s. Figure
4(a) shows the results from several random initial states.
In every case, the distance is decreased once; this means
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(a) Sum of distance between oscillatory solutions and UPS on the
every section of xi = 0 (i = 1, · · · , 12). Interval of symbols is
almost the same as the period of UPS.
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(b) Distance of oscillatory solution from the origin.

Figure 4: (a)Distance between oscillatory solutions and
UPS, and(b) oscillatory solution and the origin for green
curve in (a).

the solution is close to the UPS. For long transient oscil-
lations(green and blue curves) the trajectories stay around
the UPS for a long time. Because the UPS is only one-
dimensionally unstable, by choosing the appropriate initial
states the trajectories approach the UPS. We also calculate
the distance d0 from the origin shown in Fig. 4(b). This so-
lution turns around the origin that corresponds to the long
transient.

3.3. Discrete System

We also consider a discrete system defined by

yi(n + 1) = ayi(n)(1 − y2
i (n)) + cyi+1(n) (3)

(i = 1, 2, · · · , 12, y13 ≡ y1)

For positive values of a and c, the pitchfork bifurcation oc-
curs at a + c = 1. Thus we set a = 1.1 and c = 0.2.
In this case, stable equilibrium points (y1, y2, · · ·, y12)
= (B, B, · · · , B) and (−B,−B, · · · ,−B) are generated. We
show a temporal switching pattern in Fig. 5. This pattern
is also a transient state to one of the two quiescence at-
tractors, however, it is very difficult to distinguish whether
transient states or steady states for a large number of cells.
We estimate that the key of generating this oscillation is the
existence of symmetrical two quiescence attractors with re-
spect to the origin.

t

i

Figure 5: Temporal switching pattern for Eq. (3). The
meaning of black and white is the same as Fig. 2.
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Figure 6: Circuit diagram.

3.4. Circuit Experiment

We consider an analog circuit using inverting amplifiers
with diffusive coupling, shown in Fig. 6. The output volt-
age Vout of the inverting amplifiers is a piecewise linear
function of the input voltages Vin as shown in Eq. (4), in
which the operating range (the power supply ±Vp) of the
operational amplifiers composing them is taken into ac-
count.

Vout =



















−Vp if Vin > Vp/g,
−gVi if −Vp/g ≤ Vin ≤ Vp/g,
Vp if Vin < −Vp/g

(4)

where g is the gain of the amplifiers. This simple nonlin-
earity plays an essential role in the stability and transient
phenomena of the system. The circuit equation is given by
Eq. (5).

CR
dVi

dt
= −Vi + Vout(Vi−1) (5)

(i = 1, · · · , n, V0 ≡ Vn)

We observe a long transient oscillation shown in Fig. 7,
which last more than ten minutes, in the experiment with
the circuit of 40 operational amplifiers diffusively coupled
with a time constant (RC) 0.1[sec]. A number of nodes and
a piecewise linear system are different from Sec. 3.2, how-
ever the essence is not lost, because the keys of generating
this oscillation are even number of nodes and the symmet-
rical property of inverting state variables

The duration ts of the oscillations approximately obeys
a power law distribution, i.e. f (ts) ' 1/ts, not an expo-
nential distribution. We then study the dependence of the
transient oscillations on fluctuations in the initial values of
the voltages of the nodes and variations in the values of the
elements with computer simulation. Negative spatial cor-
relations in the initial voltages make the oscillations less
occur and shorten the duration, while positive correlations
have little effect. Variations in the elements: the resistance
R, the capacitance C and the gain g of the amplifiers also
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Figure 7: Time series data from experiment.

decrease the occurrence of the oscillations since they break
the symmetry of the system. Long oscillations, however,
still appear even though the values of the elements vary in
the ranges of the order of several hundred times.

4. Conclusions

We investigate the mechanism of oscillatory solutions in
coupled even number of neurons as a ring. In a time do-
main, these oscillatory solutions show switching patterns
between positive and negative values. We calculate the dis-
tance between the oscillatory solutions and the UPS gener-
ated by the Hopf bifurcation on the sections xi = 0. This
result shows that these patterns are formed by the trajecto-
ries closing to the UPS and staying around it for a long
time. We also study the discrete system and the piece-
wise linear system as the model of an analog circuit. From
these results, we consider the key of generating this phe-
nomenon is that the system has the symmetrical property
of inverting state variables and two symmetrical equilib-
rium points with respect to the origin. However, we can
say that some perturbations are allowed, because we con-
firm this phenomenon in a simple electrical circuit using
inverting operational amplifiers. It is an open problem to
study other coupling methods [18,19].
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