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Abstract—Bone-conducted (BC) speech can be
used instead of air-conducted (AC) speech for speech
communication systems in extremely noisy environ-
ments. However, it has very poor sound quality and
its intelligibility is degraded when transmitted through
bone conduction. Therefore, blindly improving voice
quality and the intelligibility of BC speech is a chal-
lenging topic. We propose a linear prediction (LP)
scheme based blind-restoration model to improve voice
quality and the intelligibility of BC speech. This LP-
based method originates from the linear predictive
concept, which regards speech signals as the represen-
tation of source and filter information. We evaluated
the proposed model in comparison with other models
to find out whether it could adequately improve voice
quality and the intelligibility of BC speech, using ob-
jective measures (LSD, MCD, and LCD) and carrying
out word intelligibility tests for Japanese words and
modified rhyme tests for English words. The experi-
mental results for objective and subjective evaluations
proved the practicability of blind BC restoration.

1. Introduction

It is very difficult for automatic speech recognition
(ASR) systems or humans to accomplish speech com-
munications in extremely noisy environments. Many
different complex models have been used to reduce in-
terfering noise to solve this but these are ineffective
when the noise levels are too high. Another possi-
ble solution is to use bone-conducted (BC) speech due
to its stability against interfering noise [1]. Although
not affected by external noise, the BC speech is at-
tenuated in a complex way when transmitted through
bone conduction. The voice quality and intelligibility
of BC speech are degraded due to bone-conduction.
We are therefore presented with a new challenge in the
speech signal-processing field since it is very difficult
to blindly restore those of BC speech.

The purpose of our approach was to restore BC
speech so that it could be directly applied to human-
hearing systems and the front end of ASR systems.
This means that BC speech should be restored blindly
without other information such as that on AC speech,
and the restored processing should adapt incoming
BC speech. As various methods of simply deriving
inverse filtering such as the cross-spectrum and long-
term Fourier transform methods [2] yielded restored

signals with artifacts such as musical noise and echoes,
they only created slight improvements in voice qual-
ity [3, 4]. Moreover, these methods are difficult to
adapt to BC speech’s characteristics, which change due
to conditions such as BC measurement points, pro-
nounced syllables, and speakers.

Our strategy was to complete a practical framework
that would help to restore BC speech. We proposed
restoration models using the linear prediction (LP)
concept as preliminary models in previous studies. LP-
based models [3, 4] were proposed that originated from
the concept of the source-filter model. This model
could yield restored both voice quality and the intelli-
gibility of BC speech signals. Moreover, we proposed
an LP-based model with the ability of blind restoration
by predicting parameters [4] from the fact that the LP-
based model only depended on the unknown LP coef-
ficients of AC speech (AC-LP coefficients). Machine-
learning methods were applied to predicting AC-LP
coefficients and some reasonable results were obtained.
However, that model [4] still had significant limita-
tions: (a) the LP coefficients were not suitable for pre-
diction with statistical models; (b) even small predic-
tion errors could cause problems with filter instability;
and (c) inverse filtering was also determined to remain
unchanged for an entire BC speech signal [3, 4].

We improved the model of LP-based blind restora-
tion by (1) extending the processing scheme from long-
term to a frame-basis, (2) converting stable parameters
of LSF coefficients on LP representation, and (3) pre-
dicting parameters using a recurrent neural network.
Since LSF coefficients play the same role in the presen-
tation of the spectrum envelope and are limited within
a range (0, π), they could help alleviate the limitations
with LP coefficients in predictions. The processes of
restoration on a frame-basis could also be adapted to
inverse filtering in real time. A simple recurrent net-
work was applied to predict AC-LSF coefficients to
complete the blind restoration system.

2. Blind BC restoration model

2.1. Signal restoration diagram based on LP

Let x(n) and y(n) be discrete signals of AC and its
associated BC speech. They are represented [3, 4] as:

−Gx(z) = X(z)
P∑

i=0

ax(i)z−i, ax(0) = −1, (1)
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Figure 1: Ratios of AC-BC residues: (a) AC speech,
x(t), (b) BC speech, y(t), (c) residue correlation (gx(n)
and gy(n)), and (d) residue ratio, Gy(ω)/Gx(ω).

−Gy(z) = Y (z)
Q∑

i=0

ay(i)z−i, ay(0) = −1, (2)

where X(z) and Y (z) are the z-transforms of x(n) and
y(n), P and Q are LP orders, ax(i) and ay(i) are i-
th LP coefficients, and Gx(z) and Gy(z) are the z-
transforms of the LP residues of gx(n) and gy(n).

Figure 1 shows a typical example of the relation be-
tween AC and BC speech signals. This suggests that
the AC and BC residues are almost the same except
for magnitude. We can therefore represent this ap-
proximately as a constant factor, k, as

Gy(z)/Gx(z) = k. (3)

Let us assume that H(z) is the transfer function
from AC speech to BC speech in the z-domain. The
inverse filter, H−1(z), can be found as the inverse of
H(z) and used to easily restore BC to AC speech. We
can obtain the equation for H−1(z) simply as [3, 4]

H−1(z) = k

Q∑
i=0

ay(i)z−i

/
P∑

i=0

ax(i)z−i. (4)

The constant value, k, can be chosen manually and
used to control the magnitude of restored speech. The
latter term depends on the LP coefficients of signals.
Therefore, these LP coefficients have to be predicted
from observed BC speech; LP coefficients, however, are
inappropriate parameters for statistical models. Line
spectral frequency (LSF) coefficients are thus used as
more appropriate parameters in this paper.

2.2. LSF representation

Let A(z) be an LP filter on an LP representation.
The LSF coefficients, φ and θ, can be derived from a

symmetric polynomial and an anti-symmetric polyno-
mial, U(z) and V (z), as the phase of conjugated zeros.

A(z) =
P∑

i=0

a(i)z−i, a(0) = −1, (5)

U(z) = A(z) + z−(P+1)A(z−1), (6)

V (z) = A(z)− z−(P+1)A(z−1). (7)

U(z) and V (z) have conjugated zeros that can be ex-
pressed as e±jφ and e±jθ. Phases φi and θi are inter-
laced with each other in the interval, (0, π).

0 < φ1 < θ1 < φ2 < θ2 < · · · < π. (8)

The interlacing properties of LSF coefficients help to
exclusively determine U(z) and V (z), then A(z). Sub-
stituting Eqs. (5)-(7) into Eq. (4), we can obtain:

H−1(z) = k
Uy(z) + Vy(z)
Ux(z) + Vx(z)

. (9)

Here, the inverse filtering depends on the LSF coeffi-
cients of speech signals, instead of the LP coefficients.

Figure 2 is a block diagram of the LP-based blind-
BC speech restoration model. We will explain how to
predict AC-LSF coefficients in this section.

2.3. Prediction of AC-LSF coefficients

Problem: Let VY be the observed vector of BC-
LSF coefficients VY (ly(1), ly(2), · · · , ly(q)), and let
VX be the associated vector of AC-LSF coefficients
VX(lx(1), lx(2), · · · , lx(p)). We need to approximately
predict the best match series of output vector VX from
a series of input vectors VY . Since the characteristics
of LSF coefficients are as in Eq. (8), LSF differentials
have positive values in the range of (0, π). Instead
of using LSF coefficients directly, using LSF differen-
tials can help simplify the requirements for predicting
problems. Let ΔVY be the observed vector of BC-
LSF differences ΔVY (Δy(1), Δy(2), · · · , Δy(q)), and
let ΔVX be the predicted vector of AC-LSF differen-
tial ΔVX(Δx(1), Δx(2), · · · , Δx(p)). We need a model
Ω that can approximately predict the best match se-
ries of output vectors δVX from a series of input vector
ΔVY as: ΔVX ← Ω(ΔVY ).

The Elman network, which is also called a simple re-
current network (SRN), has one hidden layer with con-
nections from its hidden layer back to a special copy
layer. The special copy layer is treated as just an-
other set of inputs and so standard back-propagation
learning techniques, i.e., common supervised learning
technique, can be used for training network [5, 6].

Since the function learnt by the network depends on
the current inputs and previous states of the network,
this model should be a good choice for solving our
problem. We chose k = 1 and set P = Q = 20 in this
paper. This means that the input and output vectors
have 20 dimensions. There were 20 nodes for each
layer: the input layer, the output layer and the hidden
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Figure 2: Block diagrams of proposed model.

Table 1: Objective evaluations (Japanese data).
Objective Non-blind Blind
Measure BC LTF LSF LSF-SRN

LSD 12.08 11.33 10.38 11.21
MCD 20.52 19.37 17.53 19.39
LCD 2.80 2.51 1.83 2.58

Table 2: Objective evaluations (English data).
Objective Non-blind Blind
Measure BC LTF LSF LSF-SRN

LSD 14.28 13.57 8.92 9.64
MCD 21.72 18.15 12.55 15.96
LCD 3.04 2.91 1.79 2.43

layer. We chose 250 ms as the length of frames, and
125 ms as the overlap of two neighbors. These values
were to keep the frame-length sufficiently short, and
also reduce the number of training vectors for a small
prediction model.

3. Evaluations

The aim of our evaluations was to investigate
whether the proposed model could adequately restore
BC speech to attain better voice quality and speech in-
telligibility and whether this would work well blindly.

We built two AC/BC databases for the experiments,
the first for Japanese and the second for English.
The Japanese database included 101 syllables and 100
words recorded from ten speakers. These words were
selected from Japanese word lists for the intelligibility
test by NTT-AT (2003) [8]. The English database in-
cluded 300 words of the modified rhyme test (MRT),
recorded from six speakers. BC and clean AC speech
signals were recorded simultaneously. The BC speech
was collected at five different positions on the head and
face: (1) the mandibular angle, (2) the temple, (3) the
philtrum, (4) the forehead, and (5) the calvaria.

Using both objective and subjective measurements,
we evaluated a long-term Fourier transform model
(LTF) [3] and the two LP-based models (the first was a
non-blind model with LSF coefficients (LSF) and the
second was a blind model with SRN applied to LSF
(LSF-SRN)).

3.1. Objective evaluations

We used log-spectrum distortion (LSD), LP distance
(LCD), and mel frequency cepstral coefficient distance

(MCD) for the Japanese and English databases used to
evaluate the methods. These objective measurements
were computed as:

LSD =

√√√√ 1
W

W∑
ω

[
20 log10

(
|S(ω)|
|Ŝ(ω)|

)]2

, (10)

LCD =

√√√√ 1
P

P∑
i=1

(ax(i)− ay(i))2, (11)

MCD =
12∑

i=0

(cx,i − cy,i)
2
, (12)

where W is the upper frequency (8 kHz in this case),
and S(ω) and Ŝ(ω) are the amplitude spectra obtained
by the 1024-points FFT calculation of 25-ms frames
with 15-ms overlap. ax(i) and ay(i) are the i-th LP
coefficients of signals with the LP order being set P =
20, and cx,i and cy,i are the i-th mel frequency cepstral
coefficients (MFCCs) of the signals.

Tables 1 and 2 show that the distances of the three
objective measurements between the clean AC speech
signal and the observed BC speech and restored speech
signals for Japanese and English datasets, respectively.
The results of comparison revealed that the LSF model
was the best for all measurements. Even for blindly re-
stored BC speech, the LSF-SRN was almost the same
as LTF on the Japanese database and closely followed
the best LSF model on the English database.

3.2. Subjective evaluation

Word intelligibility tests (WITs) were carried out on
the Japanese database with 40 Japanese subjects and
the modified rhyme tests (MRTs) were carried out on
the English database with six English native speakers.
All the subjects had normal hearing.

The speech signals of 80 words were played in ran-
dom order in the WITs. The subjects, who did not
know these words previously, were asked to listen to
each word only once and write down what they heard
in Hiragana. We intended to evaluate the intelligibility
of these signals in four different familiarity ranges [8].
Since all subjects listened to a word only once, we di-
vided the 40 subjects into five listening groups to listen
to 400 stimuli. Then, subjects in each group listened
to 80 distinct words. Intelligibility could generally be
evaluated by the average recognition accuracy, which
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Table 3: Word intelligibility test (correction (%)).

Familiarity BC LTF LSF
LSF

AC
-SRN

R1 (1.0–2.5) 3.5 3.5 26.0 14.5 66.0

R2 (2.5–4.5) 3.0 3.0 37.0 19.0 63.0

R3 (4.5–5.5) 13.0 21.0 58.0 43.0 71.5

R4 (5.5–7.5) 20.5 36.0 64.5 43.5 77.5

Average 10.0 15.9 46.4 30.0 69.5

Table 4: Modified rhyme test (correction (%)).
BC LTF LSF LSF-SRN AC
69.7 76.3 88.0 82.5 95.7

was scored for all subjects. Table 3 lists the recogni-
tion accuracy scores of the WITs.

Listeners in the MRTs were given six-word lists and
then required to identify which of the six had been spo-
ken. There were 50 six-word lists of rhyming or similar
sounding monosyllabic English words. Every word was
in consonant-vowel-consonant sound sequence, and the
six words in each list only differed in the sound of the
initial or final consonant. The MRT results indicated
errors in discrimination for both initial and final con-
sonant sounds, and also showed improvements in the
intelligibility of restored speech [7]. Table 4 lists the
correct scores for the MRTs. The LSF model yielded
the best results, the same as for the objective mea-
surements, closely followed by LSF-SRN.

3.3. Discussion

The evaluation results in Tables 1, 2, 3, and 4
demonstrate that the non-blind LP-based model, LSF,
and the blind LP-based model, LSF-SRN, restored the
BC speech signal significantly, both in terms of intel-
ligibility (LSD, MRT, and WIT) and the spectral dis-
tance for the front end of ASR systems (LCD, MCD).

The LSF model improved the average recognition
accuracy of BC speech by 36.4 % in the WIT scores.
The LSF-SRN model followed closely with an ex-
pressed result 20 % greater than that of BC speech.
We generally found that it was more difficult to re-
store the BC speech signal in low familiarity ranges.
The LTF model yielded no improvements in low fa-
miliarity ranges (R1 and R2). There were more im-
provements when these was higher familiarity. The
LSF model even improved the average recognition ac-
curacy by about 45 % in high familiarity ranges (R3
and R4). At these familiarity ranges, LSF-SRN im-
proved the BC speech by almost the same amount (43
%) in these familiarity ranges.

Even though it is a blind model, LSF-SRN had the
ability to improve voice quality and the intelligibility
of the BC speech signal. The improvements in intel-
ligibility were evident for both English (MRTs) and
Japanese (WITs). This also means that the SRN was
adequately trained to predict AC-LSF coefficients and
this then helped the LSF-SRN model to achieve good
restoration.

4. Conclusion

We proposed an LP-scheme-based restoration model
for improving voice quality and the intelligibility of
BC speech. In this scheme, we improved the model
of LP-based blind restoration in this scheme in three
ways by (1) extending the processing scheme from a
long-term to a frame-basis, (2) converting stable pa-
rameters of LSF coefficients on LP representations,
and (3) predicting parameters using a recurrent neu-
ral network. We comprehensively evaluated the model
we developed on two different AC/BC databases to
compare it with other models to find whether it could
adequately improve voice quality and the intelligibil-
ity of BC speech. We used three objective measures
and two subjective tests. The experimental results re-
vealed that the LP-based model was sufficiently prac-
tical for blind-BC restoration. The model could espe-
cially be applied to improving the intelligibility of BC
speech without considering language differences.

We intend to evaluate this model using a larger
AC/BC dataset in future work and different measur-
ing positions for recording. We also intend to assess
what effect it has on restoring different syllables and
utterances. Building a blind restoration model as good
as the LSF model poses a real challenge in the future.
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