
Robust Speech Recognition Based on Running Speech Spectrum 
on Critical Band Intensity 

 
Nongnuch SUKTANGMAN*,   Kraisin SONGWATANA* and Yoshikazu MIYANAGA† 

*Faculty of Engineering, King Mongkut’s Institute of Technology, Ladkrabang 3-2 Chalongkrung Road,  
Ladkrabang, Bangkok 10520, Thailand.  

† Graduate School of Information Science and Technology, Hokkaido University,  
Kita 14 Nishi 9, Kita-ku, Sapporo-shi, Hokkaido, 060-0814, Japan. Email: † miya@ist.hokudai.ac.jp 

 
 

ABSTRACT 
 In this report, we introduce the new results of robust 
automatic speech recognition (ASR) based on features of 
speech spectrum on Bark scale. The robustness is improved by 
adding running spectrum filtering (RSF) techniques and 
dynamic range adjustment (DRA) to the features. Bark scale is 
a psychoacoustics measurement on human hearing property 
and speech features extraction processes consists of four steps: 
(1) auto-regressive model (AR model), (2) critical band 
intensity (CBI), (3) logarithm CBI into discrete cosines 
transform, DCT ( log(CBI) ). The detailed information feature 
is extracted by RSF and DRA from DCT spectra of log CBI 
sixteen dimension parameters vectors, sixteen dimension 
parameters of delta, parameter voice energy and a parameter 
of delta energy. In ASR, the utterance signal-to-noise ratio 
(SNR) for the speech signal is first extracted speech features 
for recognition and decoded via acoustic hidden Markov 
models (HMMs) trained with clean data. We explore the noise 
robust property of the total system and thus several noise 
circumstances were considered 0 dB SNR to 20 dB. The 
recognition rates are improved in our experiments by above 
27% at 0 dB SNR, 30% at 10 dB SNR and 7% at 20 dB SNR. 

Keywords: Robust Speech Recognition, Bark scale, CBI, RSF, 
DRA.  

1.   INTRODUCTION 

  Speech recognition systems trained in quiet environments 
are subjected to performance degradation in the presence of 
ambient acoustic noise. The degradation is mainly attributed to 
the mismatch between clean acoustic models and noisy speech 
data. Considerable efforts have been made to reduce this 
mismatch and improve recognition accuracy in noisy 
conditions [1]. Generally speaking, noise-robust algorithms 
are applied in the front-end feature domain or in the back-end 
model domain. 

In the front-end feature domain, spectral subtraction [1] 
and [2], is a commonly used method for noise suppression 
where additive noise spectrum is estimated and subtracted 
from the noisy speech spectrum to recover the clean speech 
spectrum. These techniques typically work at the spectral level 
of the extracted feature by trying to rid of the effect of external 
noise on the spectrum. A relatively new technique called RSF 
processing [3] and [4], which has shown to be quite successful 
for noise robust speech recognition, tries to remove those 
noise components in the power spectrum whose temporal 
properties are quite different from that of the speech 

component. Band-pass filters, with bandwidths equal to the 
bandwidths of the temporal characteristic of the speech 
component, are applied to each frequency band of the 
spectrum, to get rid of the noise components. 

Most contemporary ASR systems attempt to incorporate 
some of these features [5]-[9]. In some conventional speech 
recognition system, speech spectrum envelops are calculated 
from auto-regressive model (AR model) using minimum mean 
square estimation (MMSE) method. The log spectrum 
envelops are also employed as speech features. They are 
converted to Mel-frequency Cepstrum components and 
Perceptual Linear Predictive Coefficients components, [5]-[7]. 
As a unique spectrum distortion measure, Bark scale has been 
studied [5], [8], [9]. This scale is based on human 
physiological and psychological property. Bark scale is 
recognized as a suitable scale for recognizing many auditory 
phenomena, such as perception of loudness and timbre. These 
processes provide good performance in many languages. In 
this report, the coefficients of DCT (log(CBI)) from AR are 
used as feature representation of speech signals in the ASR 
process.  

These features are applied on isolated word speech 
recognition experiments using HMM. This report is organized 
as follows: section 2 explains the feature extraction; in section 
3 the robust parameters for speech feature by RSF and DRA is 
discussed; and in section 4 the speech recognition experiments 
are reported. The concluding remark is presented in Section 5.    
 

2. FEATURES EXTRACTION  

 Fig.1 shown the total process proposed in this report.  The 
speech data are first segmented into frame of 300 samples 
where its time length 27.21 ms with 11.025 kHz sampling rate. 
Each frame of speech is represented by the parameters vector 
of DCT (log(CBI)), and the robust speech parameters by RSF 
and DRA. These features are applied to HMM for training and 
recognition. 

2.1 Auto-Regressive Model (AR model) 
 In Fig.1, the speech data are pre-emphasized and then 
Hamming window is applied. In the linear acoustics model of 
speech production [10] and [11], the speech signal is produced 
by filtering the excitation signal with a time-varying 
linear filter (the vocal tract)  as shown in Fig.2.  The AR 
model coefficients are extracted by using MMSE.  For a given 
speech sample at time k, the output signal is assumed to be  
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Fig.1: Block Diagram of a Proposed Speech Recognition 
System. 
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where ( ) are the estimated coefficients of the  AR 
model.  q is the order of the Linear Predictive Coefficients.  From 
(1), we get 
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where ( )1−zH  is a Z-transfer function of linear speech 

production model whose output is an observed speech. ( )1−zS  

and ( )1−zU  are the output speech function and an excitation 
signal function in z-domain respectively. 

Eq.(2) represents the spectrum envelop of MMSE when 
1−z = and ωje− fπω 2= . The value denotes frequency [Hz]. 

The spectrum envelop represents an approximation of a linear 
speech production model. For this report, several experiments 
are carried out with high accuracy recognition. MMSE with 
15-th or more predictive order to speech spectrum envelops 
are mapped on to the Bark scale and extracted features to high 
accuracy recognition.  

f

2.2 Bark scale and Critical Band Intensity (CBI) 
The Bark scale is a psychoacoustics spectrum measure 

whose property corresponds to human hearing. In other words, 
it is based on the fact that our hearing system analyzes speech 
with critical bands intensity (CBI). The concept of critical 
band has been developed [8], [9].  

Some experiments have shown that critical bands are 
narrower at the region of low frequencies than at the region of 
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Fig.2: Linear prediction model of speech. 

 
high frequencies. The critical bands are analogous to the band 
of a spectrum analyzer with variable center frequencies and 
bandwidth. 
       Based on the measurements by Zwicker [8], the Bark scale 
is approximately expressed in terms of the linear frequency by 
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The range of human auditory frequency spreads from 20 

to 20,000 Hz. It covers approximately 25 critical bands on 
Bark scale. For example, the lowest critical band is represented  
by β = 1 [Bark]. , the center frequency of a critical band, is = 
50 Hz when 

cf
β = 1.  The corresponding critical bandwidth fΔ  

can be expressed by 
 

        [ ] 69.026104.117525 cff −×++=Δ                    (4) 
 
which is approximately = 100 Hz. 
       In this report, the underlying sampling rate is set to be 
11,025 kHz with a bandwidth of 5.5 kHz. Accordingly, there 
are 18 critical bands as listed [8].   
       The intensity of voice in the critical band ( )mα  can be 
calculated by  
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where and are the lower and upper band frequencies 

of the m-th critical band, respectively. The 
mlf , muf ,

α represents the 

spectrum energy of MMSE spectrum envelop, | ( )1−zH |.  In other 
words, mα represents the integrated power of MMSE spectrum 
envelope in the m-th critical band. The samples of 18 CBIs are 
shown as in Fig.3. 

2.3 Discrete Cosines Transform on Logarithm CBI DCT 
(log(CBI)) and Deltas 

 It is generally believed that logarithmic function is 
sensitive to certain types of noise and signal distortions [13]. 
To increase the dynamic range of CBI, logarithm of the CBI is 
used.  Fig.3 shows an example of mapping of CBI values on to 
log scale.  It shows that the small-valued information on the 
CBI is enhanced to in the log(CBI), reflecting the importance 
of them. Let the logarithmic form of  mα  be 
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Fig.3: Critical Band mapping between linear frequency scale 
and Bark scale. 
 
           )(log10 mm αδ =                                           (6) 
 
where m = 1 to 18.   The Discrete Cosine Transform (DCT) of 

mδ  is calculated by  
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The performance of a speech recognition system can be 

greatly enhanced by adding time derivatives to the basic static 
parameters. The delta coefficients are computed using the 
following regression formula 
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where  is the delta of DCT(Log(CBI)) at fram n , 
computed in terms of the corresponding static parameters 

to . The value of 

n
mD

θμm
θμ −

m θ  = 2 for this report, 4 terms are 
used to compute each delta component, two before and two 
after. 
 

3. RUNNING SPECTRUM FILTERING (RSF) [3],[4] AND  
DYNAMIC  RANGE ADJUSTMENT (DRA) [3],[4] 

The method combines running spectrum filtering, (RSF) 
based on the different time variations of the power spectrum 
between speech and noise, and post processing to reduce 
background noise. RSF is a filter which is realized in the 
modulation spectrum and can effectively reduce noise when 
applied to the running spectrum of speech. These techniques are 
used for both additive and convolution noises. FIR filter has been 
used to do band-pass filtering. Speech components in modulation 
frequency domain [2]-[4] are dominant around 4 Hz and anything 
out of the range of 1-12 Hz can be regarded as noise. RSF applies 
high order FIR filter (typically 240 orders) [4] to realize sharp 
modulation frequency cut off. Thus RSF realizes effective feature  
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Fig.4: Indicates speech feature of the 1th order of log CBI-
DCT , (a) value of speech feature in 0 dB SNR and (b) feature 
after RSF and DRA. 
 
extraction and can be applied in practical speech recognition 
system. Each filter-bank magnitude component iζ , where i is 
discrete time index filter of RSF and filtered filter-bank 
magnitudes iζ are produced. DCT (log(CBI)), mμ is performed 
on the iζ , where 181 ≤≤ m . The result is obtained as robust 
speech feature. 
 Dynamic range adjustment (DRA) is applied to reduce the 
differences between amplitudes of clean speech and noisy 
speech. DRA adjusts the dynamic range by normalizing the 
amplitude of a speech feature to its maximum amplitudes as 
follows.   
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where ( )tpi  denotes an element of the feature vector, m  denotes 
the dimension, t  denotes the frame number and ( )tpi  is defined 
as normalized parameter of feature.  
       An example of DCT(log(CBI)) from speech signal with SNR 
of 0dB is shown in Fig. 4(a).  After the process of RSF and DRA, 
a cleaner speech features is shown in Fig. 4(b).  RSF and DRA 
help to remove unnecessary parts (speaker characteristic and 
background noise) of the speech required for recognition. 
   

4. SPEECH RECOGNITION EXPERIMENT 

4.1 Conditions on experiment 
Experiments were carried out on the recognition of isolated Thai 
word. The Thai syllables used were the name of public institution 
in Thailand.  The speech data were recorded in a quiet room, 
sampled at 11.025 kHz. The duration of each frame of speech was 
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Table 1. Comparison between recognition performances conventional robust speech 
 

DCT(log(CBI)) DCT(log(CBI)) with DRA DCT(log(CBI)) with RSF/DRA Noise Name 0dB 10dB 20dB 0dB 10dB 20dB 0dB 10dB 20dB 
White noise 1.38 21.03 92.16 2.35 21.04 95.96 18.92 81.16 96.26 
Pink noise 1.75 74.60 98.95 42.04 88.64 99.09 48.54 94.76 99.73 
HF channel noise 1.57 11.29 72.30 1.61 8.42 76.67 6.38 60.44 88.24 
Speech babble 4.39 65.93 89.32 6.90 59.86 90.90 17.49 76.46 92.82 
Factory floor noise  2.49 73.83 97.30 4..42 70.58 96.48 27.69 88.74 97.71 
Jet cockpit noise  1.48 31.40 94.43 1.38 37.94 96.83 18.14 82.95 97.30 
Destroyer engine room noise 1.48 19.15 81.27 7.59 24.90 85.55 23.22 83.43 92.85 
F-16 cockpit noise 2.39 54.12 95.54 1.58 53.29 95.55 35.01 89.71 97.55 
Military vehicle noise 37.48 92.28 95.98 19.57 92.64 97.65 76.95 96.37 98.90 
Tank noise 56.63 85.88 87.35 68.47 92.66 95.02 83.87 95.24 97.05 
Machine gun noise 52.55 72.76 79.69 73.52 85.73 90.36 84.39 92.17 96.02 
Car interior noise 45.82 72.98 77.58 72.68 93.68 95.53 94.47 98.35 98.81 
Average 17.45 56.27 88.49 25.17 60.78 92.96 44.59 86.65 96.10 

 
 
27.21 ms (300 points) with an overlap of 9 ms (100 points) 
between successive frames. The number of word was limited into 
72.  A 20-state Hidden Markov Model (HMM) was used for 
speech recognition. In the stage of training, speech data from 10 
male  and 10 female Thai speakers were used. Each person 
uttered 72 Thai words twice.  In the stage of recognition, we have 
used 5 unspecific speaker of the male and female in the 
experiment. We explore the noise robust property of total system 
and thus several circumstances of noise were considered with 
SNR ranging from 0 dB to 20 dB. 12 additive noises were 
selected from NOISEX-92.  The test were done with DRA only 
and both RSF and DRA. 

Several experiments are carried out with these 
conditions. Each speech feature vectors has 34-
dimensional parameters consisting of 16 parameters of 
DCT (log(CBI)) ,16 delta of DCT(log(CBI)), a parameter 
of logarithm power and a parameter of delta logarithm 
power. Recognition results are shown in Table 1. 

4.2 Recognition results 
 In Table 1 all values represent average accuracy rate (%) of 
experiment recognition. “DCT (log(CBI))” means a simple 
speech recognition method in which there is no noise robust 
algorithm. “DCT (log(CBI)) with DRA” means that only DRA 
is applied in speech feature recognition. “DCT (log(CBI)) with 
RSF/ DRA” means that both DRA after RSF are applied.  
 The last row on the Table 1 shows the accuracy averaged 
from several types of noise from 0 dB SNR to 20 dB.  With no 
noise robust technique, the average accuracy for SNR of 0 dB, 
10 dB, and 20 dB SNR are above 17%, 56% and, 88% 
respectively. When, DRA is applied in speech features, the 
average accuracy improve to 7%, 4% and 4 %, respectively. 
The best performance is seen when both RAF and DRA are 
applied.  The average accuracy for the latter are above 44%, 
86% and 96 %, respectively. 

6. CONCLUSION 

         In this report, we have proposed noise robust algorithm 
in DCT (log(CBI)). In this new speech feature, MMSE 15th 
predictive order to speech spectrum envelops are mapped on 
to the Bark scale forming eighteenth-critical bands.  
Logarithm of CBIs is further transformed using DCT and delta 
values with respect to time are used.  RSF and DRA are  

 

applied to enhance the speech feature for recognition. The 
comparison is provided and the effectiveness of RSF and DRA 
in noisy speech is shown. The recognition accuracy are 
improved by 27%, 30% and 7% for SNR 0 dB, 10dB and 20 
dB, respectively. 
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