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Abstract—Recent numerical experiments reveal that in
a neural network with the spike-timing dependent synap-
tic plasticity (STDP) learning emerges a functional com-
plex network structure. The functional complex network
structure has the small-world property and the scale-free
property. However, experimental settings in the previous
report are physiologically inappropriate. In addition, al-
though there are two types of STDP learning rules, only
one rule is used in the previous experiments. Thus, in this
paper, we analyzed how the neural network structure self-
organize and what kinds of complex neural network struc-
ture emerge with physiologically appropriate settings, if the
two types of STDP learning, the additive and the multi-
plicative learning rules, are applied.

1. Introduction

Billions of neurons exist in our brain. These neurons
interconnect with each other through synapses or gap junc-
tions, then they construct complex neural network struc-
ture in the brain. Using such a complex neural network
structure, huge amounts of information are effectively pro-
cessed.

Recent studies in the field of the neuroscience show that
a new kind of synaptic plasticity is used in our brains: the
spike-timing dependent synaptic plasticity (STDP), which
has experimentally been observed in several regions of the
brain from different kinds of species[7]. It is called a
pre-neuron which transmits a spike. On the other hand,
it is called a post-neuron which receives a spike. The
long term synaptic modification depends on the firing tim-
ing between the pre-neuron and post-neuron, and it arises
within approximately a few milliseconds. Then, a synapse
is strengthened if the post-synaptic spike follows the pre-
synaptic spike. This synaptic modification is called the
long-term potentiation (LTP, see Fig.1). On the other hand,
a synapse is weakened if the pre-synaptic spike follows the
post-synaptic spike, it is called the long-term depression
(LTD, see Fig.2).

Since a seminal paper by Bi and Poo[6], experimen-
tal and theoretical studies have been devoted to analyze
the fundamental properties induced by the STDP learning.
Then, it is widely acknowledged that the frequency distri-
bution of synaptic weights by the STDP learning gradually

converges to a bimodal distribution. However, it is not only
interesting but also important to analyze what kinds of spa-
tial structure of the synaptic weight will emerge: regular,
random, or complex structure?

Until 1998, in the graph theory mainly analyzed are reg-
ular networks and random networks. A regular network
has a specific structure, but its network size is large. On
the other hand, a random network has a small network
size but no specific structure. However, it has been shown
that real networks often exhibit a small network size even
though they still keep clusters. To model these character-
istics, Watts and Strogatz[2] recently proposed an interest-
ing new concept, the small-world network and they showed
that the small-world networks have different characteristic
from regular networks or random networks: a short charac-
teristic path length but a large clustering coefficient. They
also showed that the small-world networks exist in many
real networks: for example, the co-acting relationship in
movie films, the power grid networks, and the anatomical
structure of C. elegans. Neural networks in our brain may
also have the small-world network structure, however, it
has yet been clarified how a neural network self-organizes
to evolve such a functional complex network.

Recently, Shin and Kim[1] and Suzuki and Ikeguchi[11]
reported almost at the same time a relation between the
STDP learning and the complex network structure of a
neural network. They[1, 11] showed a possibility that a
self-organization of the small-world network structure in
a neural network could be caused by the STDP learning.
Although their results[1, 11] sound interesting, two funda-
mental problems still remain. Firstly, experimental settings
are physiologically inappropriate[1]. Secondly, they only
used a single type of STDP learning rule, although there
are different types of learning rules in the STDP, such as an
additive learning rule and a multiplicative learning rule.

Thus, in this paper, using more physiological settings we
evaluated a possible complex structure of the neural net-
work with the STDP learning. More physiological settings
mean that we distingish excitatory and inhibitory neurons,
and we give 10 Hz external inputs to a neural network. We
also evaluate what kind of difference will emerge in a neu-
ral network structure if different types of the STDP learning
rule, such as the additive and the multiplicative STDP rules,
are applied.
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Figure 1: Two nodes express pre- and post-neurons. The
edge is a synaptic connection from the j-th node to the i-
th node. Gi j is a synaptic weight from the j-th neuron to
the i-th neuron. This figure represents that the j-th post-
neuron fires after the i-th pre-synaptic neuron fires. Then,
the synaptic connection between the j-th (pre) neuron and
the i-th (post) neuron is strengthened, which is call the
long-term potentiation.
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Figure 2: The same as Fig.1, but for the long-term depres-
sion. The firing timing of two spikes is reversed.

2. Neuron model

In this paper, we used the FitzHugh-Nagumo neuron
model (a two-dimensional relaxation oscillator)[9, 1] as an
element of a neural network. The i-th neuron in the neural
network is defined as follows:

εv̇i = Iion + Isyn + Iext,
ẇi = vi − wi − b,
Iion = vi(vi − a)(1 − vi) − wi,

(1)

where vi is a fast voltage variable of the i-th neuron; wi is
a slow recovery variable of the i-th neuron if ε � 1; a, b,
and ε are parameters; Iion is an ionic current through mem-
brane and Iext is an external stimulus: a neuron is connected
from the other neurons with synapses, then, if pre-synaptic
neurons emit spikes, a synaptic current is transmitted from
the pre-synaptic neurons to a post-synaptic neuron. This
synaptic current Isyn to the i-th neuron at time t is described
as follows:

Isyn(t) =
N
∑

j=1, j,i

{gi j(t)(V − vi(t)) + ḡi j(t)(V̄ − vi(t))}, (2)

where N is the number of the neurons in the neural net-
work; gi j (ḡi j) is a synaptic conductance from the j-th neu-
ron to the i-th neuron and V (V̄) is synaptic reversal po-
tential only for the excitatory (inhibitory) neuron. The ex-
citatory neuron accelerates its post-synaptic firings. The
inhibitory neuron depresses its post-synaptic firings. The
synaptic conductance between the i-th and j-th neurons is

defined as follows:

τsyn
dgi j

dt
= −gi j, (3)

τ̄syn
dḡi j

dt
= −ḡi j, (4)

where τsyn (τ̄syn) is an excitatory (inhibitory) time con-
stant of the decay. The synaptic conductance between the
i-th and j-th neuron decays exponentially if the j-th pre-
synaptic neuron does not emit a spike.

If the j-th pre-synaptic neuron fires at time t∗, the synap-
tic conductance is updated as follows:

gi j → gi j +
Gi j(t∗)
N − 1

, (5)

ḡi j → ḡi j +
Ḡi j(t∗)
N − 1

, (6)

where Gi j (Ḡi j) is a maximum excitatory (inhibitory) con-
ductance from the j-th neuron to the i-th neuron. In this
paper, we set Ḡi j as constant, and Gi j is modified by the
STDP learning rules.

3. STDP learning rules

The STDP learning rule is a temporally asymmetric Heb-
bian plasticity. This learning rule modifies the maximum
conductance from the j-th neuron to the i-th neuron in case
that the j-th pre-synaptic neuron is excitatory. Then Gi j

is strengthened if the i-th post-synaptic neuron fires after
the j-th pre-synaptic neuron emits a spike. This synap-
tic modification is called the long-term potentiation (LTP,
see Fig.1). On the other hand, Gi j is weakened if the i-
th post-synaptic neuron fires before the j-th pre-synaptic
neuron emits a spike. This synaptic modification is called
long-term depression (LTD, see Fig.2). The amounts of the
synaptic modification is decided by a temporal difference
between the two spikes. If the temporal-spike interval is
short, the synaptic modification becomes large.

Let us describe t j as a firing time of the j-th pre-synaptic
neuron, and ti as that of the i-th post-synaptic neuron. Then,
the STDP function is defined quantitatively as

F(∆ti j) =















A+e
−∆ti j
τ+ if ∆ti j > 0,

−A−e
∆ti j
τ− if ∆ti j < 0,

(7)

where ∆ti j = ti − t j and F(∆ti j) = 0 if ∆ti j = 0. The param-
eters τ+ and τ− determine a temporal window of the STDP,
and A+ and A− are the maximum amounts of the synaptic
modification in the STDP. The upper equation expresses
the LTP and the lower one expresses the LTD.

In the STDP, there are two types of the leaning rules. The
first one is an additive rule and the second one is a multi-
plicative rule. The additive STDP learning rule is described
by

∆Gi j = F(∆ti j) (8)
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where ∆Gi j is the amount of synaptic modification. Eq.(8)
means that the value of the STDP function corresponds to
the amount of the synaptic modification. On the other hand,
the multiplicative STDP learning rule is described by

∆Gi j = Gi jF(∆ti j). (9)

In the multiplicative learning rule, the product of the value
of the STDP function and the maximum excitatory conduc-
tance corresponds to the amount of the synaptic modifica-
tion.

4. Measures

To evaluate whether the network has the small-world
property or not, the average connection probability 〈k/n〉,
the characteristic path length L, and the clustering coef-
ficient C are often used. These measures are defined as
follows:

〈k/n〉 =
1
n

n
∑

i=1

ki

n
, (10)

L =
1

n(n − 1)

n
∑

j=1

n
∑

i=1,i, j

di j, (11)

C =
1
n

n
∑

i=1

Ci, (12)

where n is the number of nodes (neurons) in a network; di j

is the shortest distance from the i-th node to the j-th node;
ki is a degree (the number of synaptic connections) of the
i-th node; Ci is the clustering coefficient of the i-th node
and defined as

Ci =

ki
∑

l=1

ki
∑

m=l+1

cvi(l)vi(m)

kiC2
, (13)

where vi(l) is the l-th adjacent node of the i-th node.
cvi(l)vi(m) takes 1 if the node vi(l) and the node vi(m) are con-
nected, and takes 0 if they are not connected.

5. Structural property of a neural network as an undi-
rected and unweighted graph

If a neural network has a small-world property, the char-
acteristic path length becomes short but the clustering co-
efficient becomes high. However, these measures are usu-
ally applied to undirected and unweighted network. What
is important here is that neural networks are generally rep-
resented by a directed and weighted networks. Although
several interesting measures are proposed to evaluate such
directed and weighted networks, we transform from a di-
rected and weighted neural network to an undirected and
unweighted network in this paper. The main reason is that
after applying the STDP learning rules, the distribution

of synaptic weights in the self-organized neural network
using the STDP learning rule becomes bi-modal, which
means that some population of synapses are strengthened
to the maximum conductance while the others are weak-
ened to zero. It is very natural to consider that the strength-
ened synapses express the functional connections, which
support strong influences between two neurons. Then,
we defined that the i-th and j-th neurons are connected if
Gi j > 0.99Gmax or G ji > 0.99Gmax, and in the other cases,
they are not connected. Gmax is the maximum synaptic
weight of Gi j. We call such an undirected and unweighted
network the STDP network.

6. Construction method of random networks

To evaluate whether the STDP network has the small-
world property or not, we have to compare the STDP net-
work with its randomized network. We generated a ran-
domized network of the STDP network with a random
rewiring. Namely, we randomly rewired the edges of the
STDP network. How to construct a randomized network is
described as follows:

1. An end of the edge between the i-th and j-th nodes is
cut off with the probability 0.5, and

2. If the end is cut to which the i-th node was connected
yet, we randomly selected the k(, i)-th node. Then, if
the j-th node and k-th node are not connected, the j-th
node and the k-th node are connected,

3. Repeat the above steps 1 and 2 until all the edges are
rewired.

7. Computational simulation

7.1. Experimental settings

We used a neural network with 1,000 neurons. We also
set the number of excitatory neurons to 800, and inhibitory
neurons to 200. Each neuron has synaptic connections to
all neurons without itself. We set the synaptic weight of Gi j

to (0, 0.1] using uniform distributed random numbers as an
initial condition. If the j-th neuron is inhibitory, we also set
the synaptic weight of Ḡi j to 0.03. We applied the STDP
learning rule to Gi j at every firing event. Then, the self-
organized neural network produced by the STDP learning
is undirectionalized and unweighted. Let us define Ls(t)
and Cs(t) as the characteristic path length and the cluster-
ing coefficient of the STDP network at time t, respectively.
We also defined the characteristic path length and the clus-
tering coefficient of the random network, Lr(t), Cr(t), re-
spectively. Then, we calculated Ls(t)/Lr(t) and Cs(t)/Cr(t).
We repeated these procedures from 0 to 600 [sec]. More-
over, we simulate in both cases of the additive and the mul-
tiplicative rules.

We set the parameters of Eqs. (1)–(7) as follows: ε =
0.005，a = 0.5，b = 0.12，Iext = 0.2，V = 0.7，V̄ = 0.0，
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Figure 3: Transition of 〈k/N〉, Ls(t)/Lr(t), and Cs(t)/Cr(t).
A horizontal axis is a time at which the STDP learning
rules is applied to the neural network. The vertical axes
show the values of 〈k/N〉(top), Ls(t)/Lr(t)(middle), and
Cs(t)/Cr(t)(bottom), respectively. The red lines the results
by the multiplicative STDP rule, and the blue lines repre-
sent those of the additive STDP learning rule.

τsyn = τ̄syn = 0.2，A+ = 0.01，A− = 0.006，τ+ = 1.0，and
τ− = 2.0.

7.2. Results

The results are shown in Fig.3. A network has the high
small-world property if the average connection probabil-
ity 〈k/N〉 is small, Ls(t)/Lr(t) ' 1, and Cs(t)/Cr(t) � 1.
In Fig.3, as the average connection probability is small,
the values of Ls(t)/Lr(t) of the additive and the multi-
plicative learning rules are close to 1, and the values of
Cs(t)/Cr(t) are much larger than one. These results indi-
cate that the STDP networks using both additive and mul-
tiplicative STDP learning rules self-organize to evolve to a
small-world network.

The average connection probability 〈k/N〉 of the mul-
tiplicative rule is always smaller than that of the additive
one. In addition, we can see that the characteristics of the
multiplicative rule increase slowly, while those of the ad-
ditive rule increase rapidly. The values of Ls(t)/Lr(t) for
both learning rules finally converge to 1.15. In addition,
although Cs(t)/Cr(t) of the multiplicative rule is smaller
than that of the additive rule between 0 [sec] and 120 [sec],
the value of Cs(t)/Cr(t) of the multiplicative rule becomes
larger than that of the additive rule after 120 [sec]. From
these results, the STDP network using the multiplicative
STDP learning rule has the higher small-world property

than that of the additive STDP learning rule.

8. Conclusions

In this paper, we analyzed a complex functional struc-
ture of a neural network which evolves by additive and
multiplicative STDP leaning rules. We conducted numer-
ical simulations with more physiologically appropriate ex-
perimental conditions. From the results, we discovered
that the neural networks have the small-world property by
both STDP learning rules and that the self-organized neu-
ral network using the multiplicative STDP learning rule has
higher small-world property than the additive learning rule.
We also confirmed that the neural network with the additive
STDP learning rule rapidly constructs a complex structure
of the small-world network. In the future works, we con-
sider to analyze directed and weighted neural networks in
order to capture the characteristics more precisely.
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