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Abstract– In this paper, an adaptive observer approach is 
proposed to identify and monitor the topology of a 
biological neural network with synaptic coupling. By 
observing a single state of each neuron, it is proved that 
the topology of the entire network can be identified 
accurately, while all the unknown states of the neurons can 
also be estimated at the same time. It is also demonstrated 
that the design can serve as a monitoring system of the 
network so that any changes can be captured and reported. 
 
1. Introduction 
 

The biological neural network is long to be an active 
and challenging research topic. It is commonly considered 
as a complex network of coupling neurons, for which the 
complexity is governed by various elements, including the 
topological structure, neuron model, dynamical evolution, 
and so on. 

Due to the nature of neural network, which is usually 
nonlinear, complex and high dimensional, it is difficult to 
identify its topological structure correctly. The difficulty 
further escalates when the accessibility of the network is 
very limited. 

In this paper, an adaptive observer is proposed to 
identify and monitor the topology of a biological neural 
network. Adaptive observer is a classical design in control 
theory that simultaneously estimates the states and 
unknown parameters of a targeted system [2,7]. Recently, 
this approach has been successfully adopted to identify the 
topological structure of a neuron system with electrical 
coupling, and some encouraging results have been reported 
[6]. In this paper, with a different design of adaptive 
observer and a proof of stability, the concept is further 
extended to biological neural network with synaptic 
coupling, for which a more common situation is managed.  

The organization of this paper is as follows. In Sect. 2, 
the mechanism of transmitting signals between neurons is 
briefly described. In our design, Hindmarsh-Rose neuron 
model is used and the overall biological neuron network is 
hence formulated. In Sect. 3, an adaptive observer is 
designed to estimate the states and the topology of a 
targeted neural network based on the accessible state of the 
neurons, while its stability is proved by the Lyapunov 
stability theorem. The design is then demonstrated with 
simulation results presented in Sect. 4. Finally, some 
conclusion remarks are drawn in Sect. 5. 

2. System Model of Biological Neural Network 
 

Neuron is a basic unit in a biological neural network, 
used for processing and transmitting information. It has 
specialized projections, namely dendrites and axons, for 
bringing in and sending away information from the cell 
body, respectively. In most of the neuron cells, the 
communication is via chemical synapses, yet some neurons 
may communicate via electrical synapses with rarer cases. 

To transmit a signal (impulses) via chemical synapses, 
a chemical, called neurotransmitter, is released across a 
gap called synaptic cleft, between the axon terminal and 
the receptor site of the dendrite, and binds to the receptor 
site. A potential change is then triggered on the cell 
membrane, which will then propagate along the axon. 
After that, a depolarizing process will be undergone to 
restore the original state. 

Models of neuron have been extensively studied and a 
comprehensive summary can be referred to [4]. In this 
paper, the Hindmarsh-Rose (HR) model [3] is adopted, 
which is governed by the following dynamical system: 
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where x(t) is the membrane potential, y(t) and z(t) are the 
recovery variables with respect to the fast and slow 
currents, respectively.  

The HR model gains its recognition for having the 
ability to model different kinds of electrophysiological 
characteristics of neurons. For example, a tonic spiking can 
be observed (representing that a constantly active neuron) 
with (1) using the parameters: a=2.8, b=9, c=5,α =1.6 and 
µ =0.001. 

 
Fig. 1. Tonic spiking generated by a HR neuron model 
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The overall biological neural network can then be 
considered as the evolution of connected neurons, where 
the evolution of i-th neuron is governed by: 
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synaptic coupling, iiiii cba µα ,,,,  are constants 
specifying the HR model, Sθ ，ν  and sV  are some free 
parameters to control the neuron’s synaptic coupling. The 
connection 0>ijg  if neurons i and j are connected to 
each other, and 0=ijg  otherwise. It is also assumed that 

jiij gg =  and 0=iig . 
 
3. Adaptive Observer Design 

 
For a biological neural network consisting of N 

neurons, (2) can be rewritten as follows: 
),( gξFξ =&                    (3) 

where NR3∈ξ  defines as 
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and { }ijgg = specifies the topology of the network. 
 
Problem: Assuming that the membrane potential ix  of 
the neurons is observable, it is to design an adaptive 
observer scheme such that the topology { }ijgg =  can be 
identified. The following assumptions are also given: 
1. Similar to all the estimation processes, the situation 
of persistent excitation [5] is always assumed and the 
following hypothesis is true. 
Hypothesis H1: Let )(tξ  be a solution of (3), and 
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implies ijr =0. 

2.  Let ),,( 21 Nξξξ L=ξ , i.e. ,ii ξξ =  Ni L,2,1= , be 
the observable output of (3), there exists an observer 
design expressed as follows: 

          ),ˆ(),ˆ(ˆ ξξugξFξ +=
&           (5) 

which can synchronize (3) based on the control signal u, 
having a positive definite Lyapunov function 

,
2
1)(1 eee TV =  where ξξe −= ˆ , that evaluated along the 

solution of error dynamics, and its derivative is negative 
definite.  
Proof: 

From (2), it can be observed that F depends linearly on 
g, and hence we have 
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where iF  are smooth functions and 
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Consider a design of adaptive observer given as below: 
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where 0>ijδ  are positive constants. 

The followings prove that ξξ →ˆ , gq →  as ∞→t  

for all N3ˆ ℜ∈ξ  and { } ,NN
ijq ×ℜ∈=q  where ijq  is the 

estimates of ijg . 
Consider a positive definite Lyapunov function, 
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where iiie ξξ −= ˆ  and ijijij gqr −= , we have 
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From the equation for the error dynamics, since 
0→ie , it follows that  
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Therefore, based on H1, 0→ijr  for ,3,2,1 Ni L=  
Nj L,2,1=  as well. 

 
4. Simulation Results 
 

The proposed adaptive observer design is applied for 
an illustrative network with eight neurons only, as depicted 
in Fig. 2. Each neuron is modeled by (2) based on the 
parameters: a=2.8, b=9, c=5, [ ]66.1,58.1∈α , µ =0.001, 

10=ν , 25.0−=sθ  and 2=sV , so that all neurons are 
excited in a mode of tonic spiking, ensuring the persistent 
excitation.   
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Fig. 2. A network of eight neurons 
 

From [1], synchronization is achievable with a constant 
gain ,340.0=sg  provided that the topology is known. 
Let ,ijsij cgg =  we have 1=ijc  if there is a connection 
between neurons i  and j ; otherwise, .0=ijc  
Therefore, identifying the topology of a neuron network is 
simply equivalent to finding ijc  for all i, j. 

Now, assuming that the membrane voltage ix  is 
measurable, according to Sect. 3, an adaptive observer can 
be designed as follows: 
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where k is some positive gain vector. 
 
4.1 Identify the Topology of the Entire Network 
 

Assuming that the topology is fixed during the whole 
identification process and the network is isolated. Figure 3 
shows the dynamics of the neurons (only 1x  and 3x  are 
shown due to the limitation of pages. Similar tonic spiking 
occurs in other neurons.) in which tonic spiking is 
observed. However, although the membrane potentials of 
all the neurons are similar, they are not identically   
synchronized, otherwise the observer will not serve the 
task. 

 
Fig. 3. The network system’s state 1x  and 3x  against 
time t. 

Figure 4 depicts the connections between neuron ‘3’ 
and the other neurons, showing a very good estimation 
result. Similar cases are obtained for other connections, 
yet, they are not shown here due to the limitation of pages. 
Similar results are also noticed when the coupling between 
nodes are different.  

The state estimation errors are shown in Fig. 5 for 
reference. It can be clearly observed that ii xx →ˆ , 

ii yy →ˆ  and ii zz →ˆ  as ∞→t . 

 
Fig. 4. Estimation of jc3  where 84,2,1 −=j . 

 
Fig. 5. Estimation errors of membrane potentials ix . 
 
4.2 Monitor the Changes of the Topology 
 

The same observer can also be used to monitor the 
topology, which is similar to the identification process. 
Now assuming that the connections between neurons ‘1’ 
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and ‘3’, neurons ‘3’ and ‘5’ are broken at 50000s and 
70000s, respectively, the occurrences of disconnections are 
duly captured by the observer as shown in Fig. 6. 

 
Fig. 6. The sum of jc3  where 84,2,1 −=j , with 
neurons ‘1’ and ‘3’, and neurons ‘3’ and ‘5’ disconnected 
at 50000s and 70000s , respectively. 

 
Fig.7. Estimation of jc3  where 84,2,1 −=j , with 
neurons ‘1’ and ‘3’, and neurons ‘3’ and ‘5’ disconnected 
at 50000s and 70000s , respectively. 
 

Figure 7 shows the connections of neuron ‘3’ with the 
others. It clearly shows that 31c  and 35c  drop from 1 to 
0 after 50000s and 70000s, respectively, following the 
changes in the actual topology. The state estimation errors 
are also approaching to zero as proved previously, which 
are shown in Fig. 8.  
 
5. Conclusions 
 

In this paper, an effective method based on adaptive 
observer design is introduced to estimate the topology of 
biological neural network with synaptic coupling. It is 

proved that the state estimation errors go to zero 
asymptotically while the unknown parameters, i.e. the 
connections of the entire network can be correctly 
estimated. It is also demonstrated that such design not 
only achieves state estimation and parameter identification 
simultaneously, but also is useful for monitoring any 
changes of the network topology. 

 
Fig. 8. Estimation errors of states x with neurons ‘1’ and 
‘3’, and neurons ‘3’ and ‘5’ disconnected at 50000s and 
70000s , respectively. 
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