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Abstract—In neural systems, a fundamental element of
the systems, a neuron, interacts with other neurons, then
they often produce very complicated behavior. To model,
analyze, and predict such complicated behavior, it is impor-
tant to understand interactions between neurons, namely,
a neural network structure. In the present paper, to esti-
mate such a neural network structure by using only ob-
served multi-spike sequences, we propose two new mea-
sures, which are based on spike time metric and partial-
ization analysis. To evaluate the validity of our proposed
measures, we apply the proposed measures to multi-spike
sequences which are produced by an electrotonic coupling
of µ-models. As a result, the proposed measures can iden-
tify regular and random neural network structures in high
performance.

1. Introduction

Neural systems often show very complex behavior due
to interaction among many neurons depending on a neural
network topology. Such a neural network topology, or a
neural network structure, is described by synapses or gap
junctions between neurons. To model, analyze, and predict
the behavior of neural systems, it is important to consider
not only the dynamics of each neuron, but also the neural
network structure. However, it is not so easy to investigate
the neural network structure, which produces multi-spike
sequences, by dissecting a brain cyclopaedically.

Meanwhile, it is possible to observe these multi-spike
sequences simultaneously due to recent improvement of
measurement technologies. It is very natural to expect that
these observed spike sequences reflect essential informa-
tion about the neural network structure. Thus, it is an im-
portant issue to extract such a neural network structure to
study a neural system, not only from an anatomical point
of view, but also a functional point of view. If we can esti-
mate a functional connectivity between neurons, we might
understand how the information is coded and processed in
our brain[1].

In the present paper, to estimate the neural network struc-
ture only by these observed spike sequences, we proposed
two new measures: a spike time metric coefficient and a
partial spike time metric coefficient. The spike time met-
ric coefficient uses a concept of spike time metric[2]. The

spike time metric is based on spike timings and measure a
distance or a similarity between two spike sequences. The
partial spike time metric coefficient is based on partializa-
tion analysis[3] applied to the spike time metric coefficient.
The spike time metric coefficient evaluates a static correla-
tion between two spike sequences, while the partial spike
time metric coefficient can reveal unbiased correlation be-
tween these spike sequences by removing any spurious cor-
relations. Using two measures, we can find hidden relations
between neurons and reveal the neural network structure.

Although our final target is to analyze real neural sys-
tems, before applying the proposed measures to real multi-
spike sequences, first we examined the validity of the pro-
posed measures with a mathematical model. Our funda-
mental opinion is that even if we have a good measure, the
measure would be a castle in the air without evaluating its
potential ability under a situation that simulates real exper-
imental data. Then, in this paper, we assumed that we can
only observe multi-spike sequences but the true network
structure is unknown.

In the present paper, we used an electrotonic coupling
of µ-models[4] to produce internal states of neurons. For
the µ-models, we used a ring topology and a random topol-
ogy. In addition, we produced multi-spike sequences from
the internal states. Then, we estimated the neural network
structure of the electrotonic coupling of µ-models by using
the proposed measures. As a result, if we use both mea-
sures simultaneously, we can estimate the neural network
with high efficiency.

2. Spike time metric

To estimate the neural network structures, we introduced
a spike time metric[2] which are based on spike timings.
The spike time metric quantifies a distance which means a
similarity between two spike sequences. In the spike time
metric, the first rule is that a cost of deleting or inserting
a spike becomes 1. The second rule is that a cost of mov-
ing a single spike in time is proportional to the amount of
time by which the single spike is moved. For example, if
two spike sequences Z and Z′ are identical except for a sin-
gle spike that fires at tz in Z and tz′ in Z′, the cost c(Z, Z′)
equals to q|tz − tz′ | in the second rule, where q is a cost per
unit time. The parameter q is important parameter that de-
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termines deleting and inserting, or moving a single spike.
In these rules, a metric distance between two spike se-

quences Z and Z′ is defined as

Dspike[q](Z, Z′) = min
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where {V0,V1, . . . ,VN} is an elementary step from Z to
Z′[2]. Thus, the distance between the two spike sequences
is the minimum total cost of a set of elementary steps that
transforms one spike sequence into another sequence.

3. Two proposed measures

In the present paper, we proposed two new measures for
estimating the neural network structures. The first measure
is based on the spike time metric. We call it a spike time
metric coefficient (STMC). The STMC between two spike
sequences Xi and X j is defined as

S T [q](Xi, X j) = 1 −
Dspike[q](Xi, X j)

max
i, j
{Dspike[q](Xi, X j)}

.

Then, we define S T [q] as a matrix consisting of
S T [q](Xi, X j). If two neurons, which produce the two spike
sequences Xi and X j, are coupled, S T [q](Xi, X j) might be-
come larger than the case of the two neurons are uncou-
pled. The reason is that Dspike[q](Xi, X j) becomes smaller
than the uncoupled case, if the two neurons interact with
each other through the coupling.

However, the STMC is spuriously biased if the two neu-
rons are driven by a common input from other neurons.
Then, we proposed the second measure which is based
on partialization analysis[3] applied to the STMC. We call
it a partial spike time metric coefficient (PSTMC). The
PSTMC between Xi and X j is defined as

PT [q](Xi, X j) =
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where α(i, j) is the (i, j)-th element of inverse matrix of
S T [q]. The PSTMC estimates a partial correlation between
the two spike sequences, Xi and X j, or a correlation by re-
moving spurious correlations.

4. Experiments

We cannot evaluate the validity of the proposed measures
only by using real spike sequences, because we do not have
any information of the true neural network structure pro-
ducing the spike sequences. Then, we used a neural net-
work model to check the validity of the proposed measures
because we can have the information of the true neural net-
work structure.

4.1. Neural network model

To evaluate the validity of our proposed measures, we
used an electrotonic coupling of µ-models[4] to produce
internal states of neurons:



















































dxi

dt
= −yi − µx2

i (xi −
3
2

) + I + Ji

dyi

dt
= −yi + µx2

i

Ji = g
n
∑

j

(x j − xi),

where xi and yi are the internal states of the i-th neuron, µ
is a parameter, I is an injected background current, Ji is a
total current induced by electrotonic couplings to the i-th
neuron, g is a coupling strength, and n is the number of
couplings to the i-th neuron. In the present paper, we set
µ = 1.65, I = 0.005, g = 0.05, and dt = 0.02[ms]. We
used two types of network structure as a neural network:
the first one has a regular ring topology with 30 neurons,
and the second has a random topology produced from the
30 ring topology (Fig.1). In Fig.2, we show the typical
outputs of internal states time series of µ-models, and its
spike sequences in the case of the regular topology.

(a) (b)

Figure 1: The network structures which are used to pro-
duce the internal states of neurons. (a) Regular ring topol-
ogy which consists of 30 neurons, and (b) random topol-
ogy produced from the 30 ring topology. To obtain the ran-
dom topology, we rewired all the connections with rewiring
probability 1.

4.2. Estimation method

We observed the internal states of all neurons in the elec-
trotonic coupling of µ-models. Then, we produced multi-
spike sequences from the internal states with thresholding,
and calculated the STMC and the PSTMC between two
spike sequences, Xi and X j (i, j = 1, 2, ..., 30).

For our measures, it is important to decide q appropri-
ately, because it determines a relative sensitivity of delet-
ing and inserting, and moving a single spike. Then, we first
checked S T [q](Xi, X j) and PT [q](Xi, X j) in the case of the
regular topology by changing q as shown in Fig.3. From
these results, we set q = 500 because the disparity between
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Figure 2: (a) Time series of internal states, and (b) a raster
plot of output spikes from the electrotonic couplings of
µ-models in the case of the regular topology. To obtain
the output sequences, we used thresholding at the value of
0.65[mV].

coupled and uncoupled neurons is relatively larger than the
other q cases. The random topology has the same tendency
as the regular topology.
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Figure 3: Relation between q and (a) S T [q], and (b) PT [q]
in the case of the regular topology. Green lines show S T [q]
and PT [q] between coupled neurons. Red lines show S T [q]
and PT [q] between uncoupled neurons. Error bars with 30
trials are the range of S T [q] and PT [q], respectively.

If the corresponding two neurons are coupled, the two
spike sequences must interact with each other. In such a
case, S T [q](Xi, X j) and PT [q](Xi, X j) might become large.
On the other hand, if these neurons are not coupled,
S T [q](Xi, X j) and PT [q](Xi, X j) might become small. Thus,
to find coupled neurons pairs, we have extracted large
S T [q](Xi, X j) and PT [q](Xi, X j). Then, we calculated a
threshold which divides the coupled or the uncoupled pairs.
The threshold was decided by the Otsu thresholding[5]
which is based on a linear discriminant analysis.

4.3. Evaluation

In order to evaluate an estimation accuracy, we have to
compare an estimated neural network structure with the
true neural network structure. For this end, we used four
evaluation measures, C-C̃, C-Ũ, U-Ũ and U-C̃. C-C̃, and

U-C̃ are a ratio of the estimated number of coupled neuron
pairs to the truly coupled number of neuron pairs, and to the
number of truly uncoupled neuron pairs, respectively. C-Ũ,
and U-Ũ are a ratio of the estimated number of uncoupled
neuron pairs to the truly coupled number of neuron-pairs,
and to the number of truly uncoupled neuron-pairs, respec-
tively. The more C-C̃ and U-Ũ approach one, or C-Ũ and
C-Ũ approach zero, the more the estimation accuracy be-
comes high.

5. Results

For the case of the 30 ring topology, we show an example
of frequency histograms of S T [q] and PT [q] (Fig.4). Blue
lines show a threshold which divides coupled or uncoupled
classes. If S T [q] and PT [q] are less than the threshold, we
decided that corresponding neurons are uncoupled. On the
other hand, if S T [q] and PT [q] are more than the threshold,
we decided that they coupled. Table 1 shows the estimation
accuracy of the neural network structure.

As shown in Fig.4(a), if we use the STMC, the frequency
distribution shows that coupled or uncoupled is classified,
even if the discriminant analysis does not work well. How-
ever, if we use the PSTMC, the frequency distribution is not
classified (Fig.4(b)). The reason is that even if the neuron
A is coupled to the neuron C as shown in Fig.5, a coupling
between the neurons A and C is estimated as uncoupled,
and the PT [q] between these neurons becomes low.

Figure 6 and Table 2 show the results in the case of the
random topology. In Fig.6(a), if we use the STMC, the fre-
quency distribution does not show clear classification, then
the discriminant analysis does not work well. However, as
shown in Fig.6(b), if we use the PSTMC, the frequency dis-
tribution shows clearer classification of the coupled and the
uncoupled pairs, and the discriminant analysis works well.

The results in the case of the 30 ring topology indicate
that we have to use the STMC and the PSTMC simultane-
ously to discriminate the coupled and the uncoupled pairs
as shown in Fig.7. If we use the STMC and the PSTMC si-
multaneously, we can discriminate the coupled and the un-
coupled pairs with much higher accuracy. In addition, we
have already confirmed that the proposed measures work
well for another model, such as Izhikevich’s simple neuron
model[6, 7]. From these results, we found that the proposed
measures exhibit high performance.

Table 1: Estimation accuracy for the 30 ring topology.
measure C-C̃ U-Ũ C-Ũ U-C̃

S T [q] 1.000 0.920 0.000 0.080
PT [q] 0.500 1.000 0.500 0.000
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Figure 4: Frequency histograms of (a) S T [q] and (b) PT [q].
Histograms of all of S T [q] and PT [q] are shown in red,
and histograms of S T [q] and PT [q] corresponding to the
coupled neurons are shown in green. Blue lines show a
threshold decided by the Otsu thresholding. The network
structure is the 30 ring topology.

A D

B C

Figure 5: A partial diagram of the ring topology with 30
neurons.
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Figure 6: The same as Fig.4, but using the random topol-
ogy.

Table 2: The same as Table 1, but using the random topol-
ogy.

measure C-C̃ U-Ũ C-Ũ U-C̃
S T [q] 0.783 0.774 0.217 0.226
PT [q] 0.833 0.985 0.167 0.015

6. Conclusions

In the present paper, we proposed two new measures
in order to solve an important issue of estimating neural
network structures only from the information of observed
multi-spike sequences. We applied our proposed measures
to two types of network structure, the 30 ring topology
and the random topology. As a result, we used both mea-
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Figure 7: An example of discriminating coupled and un-
coupled pairs by using both measures. (a) The 30 ring
topology, and (b) the random topology. Green dots show
S T [q] and PT [q] between coupled neurons. Red dots show
S T [q] and PT [q] between uncoupled neurons. Blue lines
divide coupled and uncoupled pairs.

sures simultaneously, we could estimate the neural network
structures more completely.

As future works, we apply our measures to different neu-
ron models and different neural structures such as complex
networks. In addition, we have to optimize how to decide q
only from the spike sequences. Moreover, we improve the
discriminant analysis to decide the threshold which divides
into coupled or uncoupled. Our goal is that to evaluate the
validity of our framework to simultaneously observed real
multi-spike sequences, and to analysis brain systems.
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