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Abstract—This study proposes a heuristic method oris to use a mixture distribution to fit a returns distribution.
how to realize Genetic Algorithm-based parameter optiHere mixture distribution is constructed as a weighed sum
mization of Tsallis dsitribution, and its application to finan-of several radical distributions, such as normal, or Student-
cial markets. Conventionally, returns distribution is tackled distribution and so on. It has been shown that the char-
as normal, lognormal, or non-Gaussian stable distributioacteristicses of a returns distribution can be caught in a
as it has been shown in previous researches, these methodsture model accurately [5]. Thus, mixture distribution
are not accurate enough to catch the characteristicses of neethod provides more accurate estimates for risk manage-
turns distribution, in some cases, serious biases could be ment, such as estimates of the VaR. However, quantitative
troduced, in estimating Value at Risk, for example. On theesearches have shown that a returns distribution usually
other hand, to use mixture distribution has been suggestedolves over dierent time spans, mixture model can only
in our previous work, guantitative analyses have shown thaatch the characteristicses of a returns distribution at a fixed
it can catch the charateristicses of returns distribution, su¢gime span. As to grasp the whole picture of how a returns
as kurtosis, finite moments, and heavy-tailed behavior welllistribution evolves dynamically, we propose to model it
and it also provides an accurate approximation of originals a Tsallis distribution, in which the statistical parameters
distribution. However, it just catches the characteristicsese optimized by Genetic Algorithm (GA), since GA has
of the distribution at one special tme span, daily, weeklythe ability to reach a global optimal solution without con-
monthly, and so on. It is well observed that a returns distriverging into local ones [6][7][8]. The rest of this paper is
bution usually evolves over flerent time spans, especially organized as follows. In section 2, we simply review and
on kurtosis, and standard deviation. To grasp the whoummarize the evidence of returns, to show how a returns
picture of returns distribution dynamically, we propose talistribution evolves over time. And in section 3, we simply
model it as a Tsallis distribution, whose parameters are opummarize the basic properties of Tsallis distribution and
timized by Genetic Algorithm. Since Tsallis distribution Fokker-Planck equation, and to show how to optimize the
can provide a dynamic probability density function whichparameters by using GA. In section 4, we present its ap-
evolves over dierent time spans, as a dynamic trace for replication and numerical results with real market data sets.
turns distribution’s evolution. In our numerical studies, werinally in section 5, we provide some concluding remarks.
find that our proposed method works well on tracing the

whole evolving picture of returns distribution. ) o
2. Evolution of returns distribution

1. Introduction Returns can be calculated oveffdrent time spans, such
as, one hour, one day, one week, one month, one year, and
Recently many researches have focused on how to age on. Usually it tends to be fiierent distributions over
proximate or identify returns distributions of financialvarying time spans. Each distribution haffelient statis-
markets. Normal, lognormal, and non-Gaussian stabféeal properties, such as, kurtosis, standard deviation etc.
distribution have been suggested to tackle this problethseems that the evolving distribution is getting closer and
[1][2][3][4]. As it is pointed out in previous researchescloser to normal distribution, as the time span is getting
[1][5], theses models have their own merits and demeritgider and wider. But, in fact, it can be shown that most of
when applied to real stock markets. But, many quantitdhem are not normal. Normality will be rejected by statisti-
tive analyses have shown that these models are not s tests, such as Jarque-Bera test [1][3][4][5][9][10][11].
ported by the real business realities. Serious biases couldHere returns of stock A over fllerent time spans are
be introduced by these models in risk measurement or mashown in Table-1, where returns are calculatedrpy=
agement, in estimating Value at Risk (VaR), for exampldogp — logp_1. Plot of the time series of its returns is
Therefore, a new method suggested in our previous woghown in Fig.1. Seen from Table-1, kurtosis and standard
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= oqt) (6)

By maximizing the Tsallis entropy constrained by above
equation (2)-(6) for some fixeql it yields,

1

P D) = g5 (1+A0@- D= RO (1)

Where Z(t) and p(t) are Lagrange multipliers corre-
sponding to equation (2) and (5)(6).

Figure 1: Plots of returns of Stock A B(%, L -1
Z2() = R e (8)
Stock A | Kurtosis S.D. (q-1)8()
1-day 35.15| 0.00389 B(t) = 1 ©)
7-day 8.067 | 0.00984 204(t)2Z(t)a?
14-day 5.844| 0.01423 T(X)I(y)
21-day | 3.854| 0.01772 BXY) = Tty (10)
28-day 3.214 | 0.02048 _
56-day 2.550 | 0.02896 Since
112-day 0.839| 0.04148
224-day| 0.257| 0.06028 oit) = E(x-X)? (11)
then L _ .
Table 1: Evolution of kurtosis and standard deviation of oA(t) = { (5-30)A(1) ff <3 (12)
Stock A over diterent time spans 00 if q> 3

Whereq would be less thaé if it has a distribution with
finite variance, otherwise it has a distribution with infinite

variance. However, sometimes, it iditiult to assert that

deviation are getteing nearer and nearer to normal as timg,, ng distribution only has a finite variance from market
span evolves wider and wider. But, it never reaches norma‘ljlta sets

level. For the nonlinear Fokker-Planck equation

3. Tsallis distribution OP(x ty

9 . D&PP(x )"
o =~ (FOP( ) + = o

20x2

(13)
3.1. Tsallis entropy and Fokker-Planck equation
It can be solved by Equation (7) wher= 1+ u—v. Where

Tsallis entropy is defined as follows [11][12][13]. Itis F(x) is supposed to be a linear drift term, namélyx) =
straight forward thag, will converge into a usual entropy 5 _ px And here if

when g takes limit to 1, namelyS = —fPInP. Here,

P(x, t) is probability density function (p.d.f) at time and Q( — F(x) + VDP(x 09t 14
parameteq is independent of time dt ) (T30 (14)
Sq= - - f q(l B fP(X, 0%dx (1) whereé(t) is a Gaussian noise, namely,

. . . . <EMEY) >=o(t-t) (15)
The following equations can be introduced as constaints.
Equation (2) works as a constraint as to m&¥&,t) as  Where the diusion codicient term isDP(x, t)*-9, and it
a p.d.f in common sense. Equation (3)(4) and (5)(6) arie called as subéiusion in the casg < 1, and called as
so calledg-mean, andy-variance. They are flerent from  superdifusion in the casq > 1. Itis clearly diferent from

usual mean and variance unlegs 1. the normal Brownian motion, since thditision codficient
term is only D in the normal Brownian motion. Thus, this
fP(X, dx = 1 (2)  model can be used as to fit nonlineaff@sion process. Its

application is shown in the numerical experiments in sec-

E(x-x(t))g = f(x - X(t))P(x, t)%dx (38) tion4.
It can be derived from a general Ito-Langevin as follows
=0 @ [12)013].
Ex-H0% = [x- TP yx  (5) 9 _ at ) + b () (16)
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d<f(xt)> df 1, df Step 1, to generate random numbers as individuals of the
dt - fdx(a(x, Uax + 2P 0GP0 g generation with certain population. Here, each individ-
(17)  ual represents a set of parameters in P(x,t) (equation (7)),
Integrating by patrs, it yields, namely,g, and(t) or Z(t).
d < F(x(0) > P Step 2, to evaluate the fitness of each individual based on
—_— f dxf(x)(—a—x(a(x, t)P(x,1))(18) predetermined fitness function, then to sort all individuals

dt 5 of the generation according to their fitness values.
+ 9 2(b2(x, HP(x, 1)) (19) Step 3, to select tvyo individuals. with high'e.r fitness val-
20x ues from the generation at a certain probability. The selec-

tion strategy has a great deal pf variations, Roulette strategy

It also can be written as . ; o
is adopted in our applications.

d<f(xt)> _ d Step 4. to apply genetic operations, namely, crossover
dt T gt def(X)P(X’ Y (20) operation, and mutation operation to two selected individ-
AP(x, 1) uals to reproduce theifksprings and put them into the pool
= def(X)T (21)  of next generation.

Here, a crossover operation means to randomly decide

Thus, from above equations (18)(19)(20), it yields, crossover positions on the two selected individuals at first,

, then to exchange parts of two individuals each other. Basi-
o 5 cally, there are two methods to do this, one is one-point
W(b (xOP(Y) (22) crogsover, the other is multipoints crossover. The F;ater
. . ) - one is applied to our application. A mutation operation

Here, if settinga(x,t) = F(X), b(x,t) = D2P(x,t)z ,u =1, means to randomly decide mutation positions under a cer-

oP(x,t) 0
50 ——a—x(a(x,t)P(x,t))+

andy = 2 - q, then (13) is obtained. And, with tain probability, and then to change those position values of
a selected individual. It also has two ways to do this. One is
BOEIZ = B(to) I 2exyb(q - 3)(t - to)) one-point mutation, the other is multipoints mutation. The
—  2Db™Y(2 - g)(B(to) Z2(t0)) @ V'? later one is adopted in our application.
«  (exp=b(3 - g)(t - to)) - 1) Step 5, to reevaluate the fitness of each individual of the
new generation, to see if the results meet the terminal con-
Equation (7) solves (13). ditions, such as repeating times, or error range etc, if it

does, then GA terminates, else it goes back to Step 3.
And fitness function for evaluatingh individual is de-
fined as
However, it is hard to estimate parameters in Tsallis dis-
tribution, since one has to estimajeandZ(t) or A(t) si-
multaneously. It becomes more complicated when there an?1 . - .
several data sets available for sever#lledent time spans. whereVij is a sum of likelihood values corresponding to
It is necessary to consider each fitting result of each difﬂs'
ferent time span. Thus, it turns out to be a multiobjective
optimization problem. Usually it is not easy to get optimaly, Applications
solution in dealing with such a multiobjective optimization
problem. Usual optimization methods probably converge In this section, we apply our proposed method to real
into some local optimal solutions. Here we propose to geharket data set A. Data set A is the daily stock price of
parameters optimized by using GA. So far, GA, as one daftock A, from Jan, 2, 1980 Mar, 29, 2007. We fit Tsil-
the most €icient optimization methods, which convergedas distribution with 1-day, 14-day, 28-day returns. Our
rather into a global solution than a local one in search a6A's parameters are set as follows, population siZ00,
optimal solution, has been widely applied in many researa@irossover and mutation probabilities are 0.42 and 0.31 re-
fields ranging from scientific researches to social studiespectively. Andg € [0.001 50], B(t) € [0.001,50]. Fur-
[516]1[7]8]. thermore, we employ elite-keeping policy in GA. An elite-
Here, suppose that we have several data sets fiardi keeping policy is to copy an individual with higher or high-
ent tiem spans, then we can get several likelihood fun@st fitness into next generation automatically. We repeat
tions for the data sets, salyy, L1, ..L-1 Which share the GA for times and get the same global optimal solution,
same parametey, with different parameters(to), (t1), where, estimatedandg(ty) are 2.23, and 1.68 respectively.
ooy Bltmo1). LetV = Ei”:‘;)lLi, we consider that, the opti- It is a superdfusion process sinag= 2.23 > 1.

3.2. GA-based parameter optimization
Vi

. 1
F|tneSS} = mm (23)

mal solution is a set of], B(to), B(t1), ..., B(tm-1) Which We show the results of their estimated distributions com-
makesV reach the maximum. pared with their empirical distributions in Fig.2, 3, 4. Seen
Our GA scheme is designed as follows. from these figures, the numerical results that the estimated
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Figure 2: Plot of p.d.f of day-1 Figure 4: Plot of p.d.f of day-28

040 [3] Campbell, J. Y., Lo, A. W., The econometrics of fi-
nancial markets, Princeton Press, 1997.

020

- [4] Gabaix, X., etal., "A theory of power law distribution
* in financial market fluctuations’Nature 423, 2003,
S IEN pp267-270.

S T R 5w [5] Tan K., Tokinaga S., 2006. "ldentifying returns dis-
tribution by using mixture distribution optimized
by Genetic alogrithm”, Proceeding of NOLTA2006,

Figure 3: Plot of p.d.f of day-14 pp.119-122, 2006.
[6] Goldberg, D., Genetic algorithm: in search, optimiza-
P(x, t) dynamically traces the evolution of a returns distri-  tion, and machine learning, Addison-Wesley Press,
bution over diferent time spans. 1989.

[7] TanK., Tokinaga S., "Optimization of fuzzy inference
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it works well by exactly catching the evolution behavior of [8] Tan K., Tokinaga S., "The design of multistage fuzzy
the probability density function of the data sets over dif-  inference system with small number of rules based
ferent time spans. It provides us a whole picture of how  upon the optimization of rules by using GA”. Trans.
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