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Abstract—This study proposes a heuristic method on
how to realize Genetic Algorithm-based parameter opti-
mization of Tsallis dsitribution, and its application to finan-
cial markets. Conventionally, returns distribution is tackled
as normal, lognormal, or non-Gaussian stable distribution,
as it has been shown in previous researches, these methods
are not accurate enough to catch the characteristicses of re-
turns distribution, in some cases, serious biases could be in-
troduced, in estimating Value at Risk, for example. On the
other hand, to use mixture distribution has been suggested
in our previous work, quantitative analyses have shown that
it can catch the charateristicses of returns distribution, such
as kurtosis, finite moments, and heavy-tailed behavior well,
and it also provides an accurate approximation of original
distribution. However, it just catches the characteristicses
of the distribution at one special tme span, daily, weekly,
monthly, and so on. It is well observed that a returns distri-
bution usually evolves over different time spans, especially
on kurtosis, and standard deviation. To grasp the whole
picture of returns distribution dynamically, we propose to
model it as a Tsallis distribution, whose parameters are op-
timized by Genetic Algorithm. Since Tsallis distribution
can provide a dynamic probability density function which
evolves over different time spans, as a dynamic trace for re-
turns distribution’s evolution. In our numerical studies, we
find that our proposed method works well on tracing the
whole evolving picture of returns distribution.

1. Introduction

Recently many researches have focused on how to ap-
proximate or identify returns distributions of financial
markets. Normal, lognormal, and non-Gaussian stable
distribution have been suggested to tackle this problem
[1][2][3][4]. As it is pointed out in previous researches
[1][5], theses models have their own merits and demerits
when applied to real stock markets. But, many quantita-
tive analyses have shown that these models are not sup-
ported by the real business realities. Serious biases could
be introduced by these models in risk measurement or man-
agement, in estimating Value at Risk (VaR), for example.
Therefore, a new method suggested in our previous work

is to use a mixture distribution to fit a returns distribution.
Here mixture distribution is constructed as a weighed sum
of several radical distributions, such as normal, or Student-
t distribution and so on. It has been shown that the char-
acteristicses of a returns distribution can be caught in a
mixture model accurately [5]. Thus, mixture distribution
method provides more accurate estimates for risk manage-
ment, such as estimates of the VaR. However, quantitative
researches have shown that a returns distribution usually
evolves over different time spans, mixture model can only
catch the characteristicses of a returns distribution at a fixed
time span. As to grasp the whole picture of how a returns
distribution evolves dynamically, we propose to model it
as a Tsallis distribution, in which the statistical parameters
are optimized by Genetic Algorithm (GA), since GA has
the ability to reach a global optimal solution without con-
verging into local ones [6][7][8]. The rest of this paper is
organized as follows. In section 2, we simply review and
summarize the evidence of returns, to show how a returns
distribution evolves over time. And in section 3, we simply
summarize the basic properties of Tsallis distribution and
Fokker-Planck equation, and to show how to optimize the
parameters by using GA. In section 4, we present its ap-
plication and numerical results with real market data sets.
Finally in section 5, we provide some concluding remarks.

2. Evolution of returns distribution

Returns can be calculated over different time spans, such
as, one hour, one day, one week, one month, one year, and
so on. Usually it tends to be different distributions over
varying time spans. Each distribution has different statis-
tical properties, such as, kurtosis, standard deviation etc.
It seems that the evolving distribution is getting closer and
closer to normal distribution, as the time span is getting
wider and wider. But, in fact, it can be shown that most of
them are not normal. Normality will be rejected by statisti-
cal tests, such as Jarque-Bera test [1][3][4][5][9][10][11].

Here returns of stock A over different time spans are
shown in Table-1, where returns are calculated byrt =

logpt − logpt−1. Plot of the time series of its returns is
shown in Fig.1. Seen from Table-1, kurtosis and standard
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Figure 1: Plots of returns of Stock A

Stock A Kurtosis S.D.
1-day 35.15 0.00389
7-day 8.067 0.00984
14-day 5.844 0.01423
21-day 3.854 0.01772
28-day 3.214 0.02048
56-day 2.550 0.02896
112-day 0.839 0.04148
224-day 0.257 0.06028

Table 1: Evolution of kurtosis and standard deviation of
Stock A over different time spans

deviation are getteing nearer and nearer to normal as time
span evolves wider and wider. But, it never reaches normal
level.

3. Tsallis distribution

3.1. Tsallis entropy and Fokker-Planck equation

Tsallis entropy is defined as follows [11][12][13]. It is
straight forward thatSq will converge into a usual entropy
when q takes limit to 1, namely,S = −

∫
PInP. Here,

P(x, t) is probability density function (p.d.f) at timet, and
parameterq is independent of timet.

Sq = − 1
1− q

(1−
∫

P(x, t)q)dx (1)

The following equations can be introduced as constaints.
Equation (2) works as a constraint as to makeP(x, t) as
a p.d.f in common sense. Equation (3)(4) and (5)(6) are
so calledq-mean, andq-variance. They are different from
usual mean and variance unlessq = 1.

∫
P(x, t)dx = 1 (2)

E(x− x̄(t))q =

∫
(x− x̄(t))P(x, t)qdx (3)

= 0 (4)

E(x− x̄(t))2
q =

∫
(x− x̄(t))2P(x, t)qdx (5)

= σq(t)2 (6)

By maximizing the Tsallis entropy constrained by above
equation (2)-(6) for some fixedq, it yields,

P(x, t) =
1

Z(t)
(1 + β(t)(q− 1)(x− x̄(t))2)

1
1−q (7)

Where Z(t) and β(t) are Lagrange multipliers corre-
sponding to equation (2) and (5)(6).

Z(t) =
B( 1

2 ,
1

q−1 − 1
2)

√
(q− 1)β(t)

(8)

β(t) =
1

2σq(t)2Z(t)q−1
(9)

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

(10)

Since

σ2(t) = E(x− x̄(t))2 (11)

then

σ2(t) =


1

(5−3q)β(t) if q < 5
3

∞ if q ≥ 5
3

(12)

Whereq would be less than53 if it has a distribution with
finite variance, otherwise it has a distribution with infinite
variance. However, sometimes, it is difficult to assert that
returns distribution only has a finite variance from market
data sets.

For the nonlinear Fokker-Planck equation

∂P(x, t)µ

∂t
= − ∂

∂x
(F(x)P(x, t)µ) +

D∂2P(x, t)ν

2∂x2
(13)

It can be solved by Equation (7) whenq = 1+µ−ν. Where
F(x) is supposed to be a linear drift term, namely,F(x) =

a− bx. And here if

dx
dt

= F(x) +
√

DP(x, t)1−qξ(t) (14)

whereξ(t) is a Gaussian noise, namely,

< ξ(t)ξ(t′) >= δ(t − t′) (15)

Where the diffusion coefficient term isDP(x, t)1−q, and it
is called as subdiffusion in the caseq < 1, and called as
superdiffusion in the caseq > 1. It is clearly different from
the normal Brownian motion, since the diffusion coefficient
term is only D in the normal Brownian motion. Thus, this
model can be used as to fit nonlinear diffusion process. Its
application is shown in the numerical experiments in sec-
tion 4 .

It can be derived from a general Ito-Langevin as follows
[12][13].

dx
dt

= a(x, t) + b(x, t)ξ(t) (16)
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d < f (x, t) >
dt

=

∫
dx(a(x, t)

d f
dx

+
1
2

b2(x, t)
d2 f
dx2

)P(x, t)

(17)
Integrating by patrs, it yields,

d < f (x(t)) >
dt

=

∫
dx f(x)(− ∂

∂x
(a(x, t)P(x, t))(18)

+
∂2

2∂x2
(b2(x, t)P(x, t))) (19)

It also can be written as

d < f (x(t)) >
dt

=
d
dt

∫
dx f(x)P(x, t) (20)

=

∫
dx f(x)

∂P(x, t)
∂t

(21)

Thus, from above equations (18)(19)(20), it yields,

∂P(x, t)
∂t

= − ∂
∂x

(a(x, t)P(x, t))+
∂2

2∂x2
(b2(x, t)P(x, t)) (22)

Here, if settinga(x, t) = F(x), b(x, t) = D
1
2 P(x, t)

1−q
2 , µ = 1,

andν = 2− q, then (13) is obtained. And, with

β(t)(q−3)/2 = β(t0)(q−3)/2exp(b(q− 3)(t − t0))

− 2Db−1(2− q)(β(t0)Z2(t0))(q−1)/2

∗ (exp(−b(3− q)(t − t0)) − 1)

Equation (7) solves (13).

3.2. GA-based parameter optimization

However, it is hard to estimate parameters in Tsallis dis-
tribution, since one has to estimateq, andZ(t) or β(t) si-
multaneously. It becomes more complicated when there are
several data sets available for several different time spans.
It is necessary to consider each fitting result of each dif-
ferent time span. Thus, it turns out to be a multiobjective
optimization problem. Usually it is not easy to get optimal
solution in dealing with such a multiobjective optimization
problem. Usual optimization methods probably converge
into some local optimal solutions. Here we propose to get
parameters optimized by using GA. So far, GA, as one of
the most efficient optimization methods, which converges
rather into a global solution than a local one in search of
optimal solution, has been widely applied in many research
fields ranging from scientific researches to social studies
[5][6][7][8].

Here, suppose that we have several data sets for differ-
ent tiem spans, then we can get several likelihood func-
tions for the data sets, say,L0, L1, ..Lm−1 which share the
same parameterq, with different parametersβ(t0), β(t1),
. . . , β(tm−1). Let V = Σm−1

i=0 Li , we consider that, the opti-
mal solution is a set ofq, β(t0), β(t1), . . . , β(tm−1) which
makesV reach the maximum.

Our GA scheme is designed as follows.

Step 1, to generate random numbers as individuals of the
first generation with certain population. Here, each individ-
ual represents a set of parameters in P(x,t) (equation (7)),
namely,q, andβ(t) or Z(t).

Step 2, to evaluate the fitness of each individual based on
predetermined fitness function, then to sort all individuals
of the generation according to their fitness values.

Step 3, to select two individuals with higher fitness val-
ues from the generation at a certain probability. The selec-
tion strategy has a great deal pf variations, Roulette strategy
is adopted in our applications.

Step 4. to apply genetic operations, namely, crossover
operation, and mutation operation to two selected individ-
uals to reproduce their offsprings and put them into the pool
of next generation.

Here, a crossover operation means to randomly decide
crossover positions on the two selected individuals at first,
then to exchange parts of two individuals each other. Basi-
cally, there are two methods to do this, one is one-point
crossover, the other is multipoints crossover. The later
one is applied to our application. A mutation operation
means to randomly decide mutation positions under a cer-
tain probability, and then to change those position values of
a selected individual. It also has two ways to do this. One is
one-point mutation, the other is multipoints mutation. The
later one is adopted in our application.

Step 5, to reevaluate the fitness of each individual of the
new generation, to see if the results meet the terminal con-
ditions, such as repeating times, or error range etc, if it
does, then GA terminates, else it goes back to Step 3.

And fitness function for evaluatingjth individual is de-
fined as

Fitnessj =
1

(n− 1)

V j∑
j V j

(23)

whereV j is a sum of likelihood values corresponding to
Lis.

4. Applications

In this section, we apply our proposed method to real
market data set A. Data set A is the daily stock price of
stock A, from Jan, 2, 1980∼ Mar, 29, 2007. We fit Tsil-
las distribution with 1-day, 14-day, 28-day returns. Our
GA’s parameters are set as follows, population size= 200,
Crossover and mutation probabilities are 0.42 and 0.31 re-
spectively. Andq ∈ [0.001,50], β(t) ∈ [0.001,50]. Fur-
thermore, we employ elite-keeping policy in GA. An elite-
keeping policy is to copy an individual with higher or high-
est fitness into next generation automatically. We repeat
GA for times and get the same global optimal solution,
where, estimatedqandβ(t0) are 2.23, and 1.68 respectively.
It is a superdiffusion process sinceq = 2.23> 1.

We show the results of their estimated distributions com-
pared with their empirical distributions in Fig.2, 3, 4. Seen
from these figures, the numerical results that the estimated
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Figure 2: Plot of p.d.f of day-1

Figure 3: Plot of p.d.f of day-14

P(x, t) dynamically traces the evolution of a returns distri-
bution over different time spans.

5. Concluding remarks

In this study, we apply GA-based parameter optimiza-
tion of Tsallis distribution to real market data, and we find
it works well by exactly catching the evolution behavior of
the probability density function of the data sets over dif-
ferent time spans. It provides us a whole picture of how
the returns distribution evolves over varying time intervals,
not only at one fixed time span. It is important for further
researches on the whole time axis, such as evaluating the
Value at Risk over the different time spans.
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