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Abstract—This paper addresses a discrete-time consen-
sus problem of multi-agent systems. In our model, each
agent has multiple state variables instead of a scalar one. A
performance value of each agent is evaluated by a nonlin-
ear performance function based on its state. We consider
conditions for agents to achieve consensus on the perfor-
mance value using the algebraic graph theory and the mean
value theorem. The proposed method is applied to multi-
resource allocation for a group of agents to achieve perfor-
mance equalization.

1. Introduction

Over the past several years, coordinated behaviors of
multi-agent systems have been much attention to in engi-
neering and scientific fields such as decision making in an-
imal groups, sensors networks, and transportation systems
([1], [2]). While there are many researches for the multi-
agent systems, recent studies on a consensus problem have
revealed significant mechanisms for a group of agents to
reach consensus, that is, to have a common decision or to
show the same response as a group ([3], [4], [5], [6], [7]).
For instance, D. P. Bertsekas and J. N. Tsitsiklis investi-
gated the distributed asynchronous consensus algorithm in
the context of parallel computation [3]. W. Ren and R.
W. Beard also studied the information consensus problem
of multiple agents using discrete-time and continuous-time
consensus algorithms [6]. On the other hand, L. Xiao and
S. Boyd provided the optimal center-free algorithm for dis-
tributed resource allocation with convex cost functions [7].

Recently, we addressed the consensus problem of multi-
agent systems with nonlinear performance functions [8].
In the consensus problem, a state of each agent is usu-
ally assumed to be a scalar variable. The purpose of this
paper is to extend our previous work to the more general
case where each agent has multiple state variables rather
than a scalar state. The performance value of each agent is
evaluated by a nonlinear performance function according
to its current state. Throughout this paper, we say that a
group of agents achieved consensus when all agents have
the same performance value. We show conditions for the
consensus among agents using the algebraic graph theory
and the mean value theorem. As an application of the pro-
posed method, we also consider a fair multi-resource al-
location problem, where several resources are dynamically

allocated to each agent so that performances of all agents
are equal.

This paper is organized as follows. We begin by review-
ing the graph theory and the matrix theory in Section 2.
In Section 3, we explain a mathematical model for locally
interacting multi-agent systems. Section 4 considers condi-
tions for the consensus among agents on their performance
values. Section 5 focuses on an application of our theory to
a fair multi-resource allocation problem. Section 6 shows a
numerical example for the resource allocation problem dis-
cussed in Section 5. Finally, we state concluding remarks
in Section 7.

2. Preliminaries

We briefly review the fundamental facts of the graph the-
ory and the matrix theory [3], [6], [9], [10].

2.1. Graph

The topology of communication networks amongn
agents is modeled as a time-varying weighted digraph
G(V,E) with a node setV = {vi | i ∈ I} and an edge set
E ⊆ V × V, whereI = {1,2, . . . , n}. Agents are labeled
by 1 throughn and each nodevi in the digraph represents
the individual agenti. Each directed edge (vi , v j) (∈ E)
indicates the unidirectional communication from agenti to
agentj. A directed tree is a digraph whose nodes except the
root have exactly one parent. A spanning tree of a digraph
is a directed tree formed by unidirectional graph edges that
connect all the nodes of the tree. A directed graph is said to
have a spanning tree if the graph contains a spanning tree
as a subgraph.

Let Gi(V,Ei) (i = 1,2, . . . ,M) be a possible interaction
graph with a common node setV. The union of the graphs
G =

⋃M
i=1 Gi is the digraph with the common node setV

and the union of the edge sets
⋃M

i=1 Ei .

2.2. Matrix

A vector p (∈ Rn) is said to be positive or nonnegative,
denoted byp > 0 or p ≥ 0, if all components ofp are
positive or nonnegative, respectively. For any two vectors
p (∈ Rn) andq (∈ Rn), the notationsp > q or p ≥ q stand
for p− q > 0 or p− q ≥ 0, respectively. Similarly, a matrix
P = [pi j ] (∈ Rn×n) is said to be nonnegative, denoted by
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P ≥ 0, if pi j ≥ 0 for all i, j (∈ I). A (row) stochastic
matrix P is a nonnegative matrix which satisfiespi j ≥ 0 for
all i, j (∈ I) and

∑n
j=1 pi j = 1.

3. Systems Model

We consider a system withn agents each of which has
a performance value andm independent information as its
state. Letxi [k] =

[
xi1[k] xi2[k] · · · xim[k]

]T (∈ Rm) be the
state vector of agenti (i ∈ I) at timek (k = 0,1,2, . . .).
The performance value corresponding to the state vector
is denoted byyi [k] (∈ R) and characterized by the perfor-
mance functionfi(xi) = fi(xi1, xi2, . . . , xim). We assume that
each performance functionfi(xi) is strictly increasing and
of classC1.

The mathematical model of the system is described by

xi [k + 1]= xi [k]+βi [k]


n∑

j=1, j,i

αi j [k]gi j [k](y j [k]−yi [k])

,(1)

yi [k] = fi(xi [k]), (2)

where αi j [k] (∈ R) is the positive time-varying
weight on the directed edge (v j , vi) (∈ E), βi [k] =[
βi1[k] βi2[k] · · · βim[k]

]T > 0 (∈ Rm) andgi j [k] is a time-
varying Boolean variable which represents the presence of
information from agentj to agenti:

gi j [k] =


1, if agenti receives information from

agentj at timek,
0, otherwise,

andgii [k] = 1 for anyk. We assume thatαi j [k] andβi` [k]
are uniformly lower and upper bounded, that is,

αinf ≤ αi j [k] ≤ αsup, βinf ≤ βi` [k] ≤ βsup.

We say that a group of agents achieves consensus if Eq.
(3) holds for anyi, j (∈ I) and for any initial state.

∣∣∣yi [k] − y j [k]
∣∣∣ → 0, as k → ∞. (3)

4. Global Consensus

In the subsequent discussion, we assume that any state
variablexi` [k] (` = 1,2, . . . ,m) is in the interval [xinf

i`
, xsup

i`
].

Defineγi` [k] as

γi` [k] =



∂

∂xi`
fi(xi)

∣∣∣∣∣∣
xi=xc

i [k]

, if xi` [k + 1] , xi` [k],

∂

∂xi`
fi(xi)

∣∣∣∣∣∣
xi=xi [k]

, if xi` [k + 1] = xi` [k],
(4)

where xc
i [k] =

[
xc

i1
[k] xc

i2
[k] · · · xc

im
[k]

]T
(∈ Rm) and

min
{
xi` [k], xi` [k + 1]

}
< xc

i`
[k] < max

{
xi` [k], xi` [k + 1]

}
.

Applying the mean value theorem to Eq. (2), we have

yi [k + 1] = yi [k] +


m∑

`=1

γi` [k]
(
xi` [k + 1] − xi` [k]

)
 . (5)

Then, we can rewrite Eqs. (1) and (2) as follows:

x[k + 1] = x[k] + B[k]A[k]y[k], (6)

y[k + 1] = y[k] + C[k](x[k + 1] − x[k]), (7)

where

x[k] =
[
xT

1 [k] xT
2 [k] · · · xT

n [k]
]T ∈ Rmn,

y[k] =
[
y1[k] y2[k] · · · yn[k]

]T ∈ Rn,

A[k] =



−
n∑

j=2

α1 j [k]g1 j [k] . . . α1n[k]g1n[k]

...
...

−
n∑

j=2

α1 j [k]g1 j [k] . . . α1n[k]g1n[k]

...
. . .

...

αn1[k]gn1[k] . . . −
n−1∑

j=1

αn j[k]gn j[k]

...
...

αn1[k]gn1[k] . . . −
n−1∑

j=1

αn j[k]gn j[k]



∈ Rmn×n,

B[k] =diag
[
β11[k] · · · β1m[k] · · · βn1[k] · · · βnm[k]

]

∈ Rmn×mn,

C[k] =



γ11[k] . . . γ1m[k] . . . 0 . . . 0
...

...
. . .

...
...

0 . . . 0 . . . γn1[k] . . . γnm[k]



∈ Rn×mn.

From Eqs. (6) and (7), we have

y[k + 1] = y[k] + C[k]B[k]A[k]y[k]

= (In + C[k]B[k]A[k])y[k]

= W[k]y[k], (8)

where In is an n × n identity matrix andW[k] = In +

C[k]B[k]A[k] (∈ Rn×n).
Let din

i [k] be the number of incoming edges to node
vi (i ∈ I). Note thatxi [k + 1] = xi [k] for any βi [k] if
din

i [k] = 0. Thus, we assume that all agents receive infor-
mation from at least one agent, that is,din

i [k] , 0 for all i
andk.

Lemma 1 Let γsup
i`

= sup
k
γi` [k] = sup

xi

∂

∂xi`
fi(xi). The ma-

trix W[k] is a stochastic matrix with positive diagonal en-
tries if any edge weightαi j [k] satisfies
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0 < αi j [k] <
1

m∑

`=1

γ
sup
i`
βi` [k]

 din
i [k]

. (9)

Proof: The diagonal and non-diagonal entries ofW[k] =[
wi j [k]

]
in Eq. (8) are given by

wii [k] = 1−


m∑

`=1

γi` [k]βi` [k]




n∑

j=1, j,i

αi j [k]gi j [k]

 , (10)

wi j [k] =


m∑

`=1

γi` [k]βi` [k]

αi j [k]gi j [k], if i , j. (11)

Note thatγi` [k] is positive for allk since the performance
function fi(xi) is strictly increasing. Thus, all non-diagonal
entries ofW[k] are positive.

Sincedin
i [k] , 0, from Eq. (9), we have

0 < αi j [k] <
1

m∑

`=1

γi` [k]βi` [k]

 din
i [k]

. (12)

Let αmax
i [k] = max

j∈I, j,i

{
αi j [k]

∣∣∣ gi j [k] = 1
}
. Then, we have

wii [k] = 1−


m∑

`=1

γi` [k]βi` [k]




n∑

j=1, j,i

αi j [k]gi j [k]



≥ 1−


m∑

`=1

γ
sup
i`
βi` [k]

αmax
i [k]din

i [k] > 0. (13)

On the other hand, from Eqs. (10) and (11), we have

wii [k] +

n∑

j=1, j,i

wi j [k] = 1, for any i, k. (14)

From Eqs. (13) and (14), we conclude thatW[k] is a
stochastic matrix with positive diagonal entries if Eq. (9)
holds.

�

Theorem 1 Suppose thatdin
i [k] is positive for alli andk.

Let xi [0] > 0 (i ∈ I). All performance valuesyi [k] start-
ing from any initial state converges to an equilibrium point
using Eqs. (1) and (2) if any edge weightαi j [k] satisfies

0 < αi j [k] <
1

m∑

`=1

γ
sup
i`
βi` [k]

 din
i [k]

, (15)

and there exists an infinite sequence0 = k0 < k1 < k2 < · · ·
such that

(i) the time interval [0,∞) is divided into non-
overlapping subintervals[k0, k1) ∪ [k1, k2) ∪ · · ·,

(ii) each subinterval[ks, ks+1) (s = 0,1,2, . . .) is uni-
formly bounded and the union of the interaction
graphs across each subinterval has a spanning tree.

Proof: From the assumption thatαi j [k], βi` [k] andγi` [k]
are uniformly lower and upper bounded, all nonzero entries
of theW[k] in Eq. (8) are also uniformly lower and upper
bounded. Moreover, from Lemma 1,W[k] is a stochastic
matrix with positive diagonal entries. Thus, by following
the similar argument of Theorem 3.2 in [10], we have

y[k] −→ µ1, as k −→ ∞, (16)

whereµ (∈ R) is a constant value and1 = [1 1 · · · 1]T (∈
Rn).

�

5. Application to Fair Resource Allocation

We next consider fair multi-resource allocation to equal-
ize the performance of agents under the following resource
constrains:

n∑

i=1

xi` [k] = R̀ , for all k, (17)

where` = 1,2, . . . ,m.
In this section, to incorporate the resource constraints

into our model, we use an undirected graph for the com-
munication networks of agents, that is,αi j [k] = α ji [k] and
gi j [k] = g ji [k] for any i, j andk. We also assume that the
performance functionsfi : Rm 7→ R satisfy

• strictly increasing and of classC1,

• fi(xi) = 0⇔ xi` = 0 for somè ,

• fi(xi) > 0⇔ xi > 0.

Proposition 1 Let xi [0] > 0. The state vectorxi [k] is posi-
tive for all k if any edge weightαi j [k] satisfies

0 < αi j [k] <
1

m∑

`=1

γ
sup
i`
βi` [k]

 din
i [k]

, (18)

Proof: Suppose thatxi [k] is positive for somek. From
the assumptions of the performance functions, we know
that the performance valueyi [k] is positive. If Eq. (18)
holds, W[k] is a stochastic matrix with positive diagonal
entries, and henceyi [k + 1] is also positive. This immedi-
ately follows thatxi [k + 1] is positive.

Considering the preceding argument and the initial con-
dition xi [k] > 0, we conclude that the state vectorxi [k] is
positive for allk.

�

6. Simulation Results

We consider the resource allocation problem discussed
in Section 5 with 5 agents. Each agent has a performance
value yi [k] and two independent informationxi1[k] and
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xi2[k] (i ∈ I = {1,2, . . . ,5}). We give the initial values of
the states of agents as shown in Table 1 under the following
resource constraints:

5∑

i=1

xi1[k] = 1.0,
5∑

i=1

xi2[k] = 1.5, for all k.

The performance functions are given as follows:

f1(x11, x12) =
1
2

x2
11

x12 + x11 x12,

f2(x21, x22) =
1
2

x21 x22 +
1
4

x21 x2
22
,

f3(x31, x32) =
3
2

x31 x32,

f4(x41, x42) =
1
4

x41 x2
42
,

f5(x51, x52) =
1
4

x2
51

x52 +
1
2

x51 x52,

where 0≤ xi1 ≤ 1 and 0≤ xi2 ≤ 1.5 (i ∈ I). Then, we have
γ

sup
i`

as shown in Table 2 (` = 1,2). We also set the weight
αi j [k] (i, j ∈ I) andβi` [k] as follows:

αi j [k] = 0.9×

min



1
2∑

`=1

γ
sup
i`
βi` [k]

 din
i [k]

,
1

2∑

`=1

γ
sup
j`
β j` [k]

 din
j [k]



,

βi` [k] = 1, for all i, ` andk.

Table 1: Initial values of the states of agents.

x11[0] x21[0] x31[0] x41[0] x51[0]

0.25 0.23 0.05 0.16 0.31

x12[0] x22[0] x32[0] x42[0] x52[0]

0.32 0.26 0.25 0.36 0.31

Table 2: Variablesγsup
i`

under the conditions 0≤ xi1 ≤ 1
and 0≤ xi2 ≤ 1.5 (i ∈ I).

γ
sup
11

γ
sup
21

γ
sup
31

γ
sup
41

γ
sup
51

3 21
16

9
4

9
16

3
2

γ
sup
12

γ
sup
22

γ
sup
32

γ
sup
42

γ
sup
52

3
2

5
4

3
2

3
4

3
4

Figure 1 illustrates the convergence process of the per-
formance values to equilibrium. This result shows that a
group of agents achieved consensus on their performance
values.

7. Conclusions

We have considered a discrete-time consensus problem
of locally interacting multi-agent systems. The main con-
tribution of this paper is to investigate the case where each

k

y
i

Figure 1: The consensus process of performance values
yi [k] with 5 agents (i ∈ I = {1,2, . . . ,5}).

agent has multiple state variables instead of a scalar one.
We derived sufficient conditions for the consensus on the
performance value using the algebraic graph theory and the
mean value theorem. We also showed that the proposed
method was applicable to a fair multi-resource allocation
problem. As future work, we will need the further discus-
sion on the broader class of problems including time-delays
and optimizations.
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