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Abstract—This paper presents several phase synchro-
nization modes of multi–state chaotic oscillators coupled
by inductors as a ring. Several phase patters occured in
some types of coupled oscillators have been widely known.
Each chaotic circuit which used in this paper can individ-
ually behave both chaotic and periodic oscillations in the
same parameters asynchronously. In this study, such the
coupled chaotic circuits are proposed and classifications of
phase synchronization modes are investigated. In numeri-
cal simulation, many types of phase synchronization modes
are confirmed.

1. Introduction

Nonlinear dynamics on coupled chaotic oscillators is
considerable interesting for a wide variety of systems in
several scientific fields and applications. Many types of
coupled systems have been widely studied in order to clar-
ify inherent features and many researchers have already
proposed and investigated them. Coupled chaotic systems
are as one of them which have several varieties of inter-
esting behavior with emergent properties. The dynamics
of chaotic multimode oscillations or chaotic itinerancy on
several coupled systems is still considerable interest from
the viewpoint of both natural scientific fields and several
applications. They have been confirmed in several sys-
tems; e.g., coupled van der Pol oscillators [1], laser systems
[2], and so on. Phase synchronization and pattern dynam-
ics are also interesting for several engineering applications.
On the other hand, many types of chaotic systems and cir-
cuits have already been proposed and investigated in de-
tail. As interesting phenomena, there are famous chaotic
attractors such a double-scroll family [3],n-double scroll
[4]–[6] and scroll grid attractors [7]. If the active elements
including in the systems have complexity constructed by
compound some nonlinear elements, it can be easily con-
sidered that they yield several interesting features. The cir-
cuit which can individually behave both chaotic or periodic
oscillations in the same parameters had been shown [8].
This type of circuit was called a multi–state chaotic circuit
(abbr. MSCC). Multimode oscillations in coupled two or
more multi–state chaotic circuits had also been investigated
[10][11]. Such complex and strange nonlinear structures
yield a wide variety of chaotic phenomena. It is an impor-
tant idea that how does nonlinearity lead to various kinds

of behaviors. They are also constructed by making several
equilibrium points. A mechanism and search of chaotic
regions in piecewise linear systems were investigated [9].
The purpose of our study is to clarify coexistence of both
chaotic and non–chaotic behavior in the chaotic systems.
Further complex behavior in the large scale network of the
coupled chaotic circuits are also investigated. It is known
that complex behavior can be confirmed such chaotic itin-
erancy and spatio-temporal chaos on the large scale cou-
pled networks. Some kinds of oscillation modes had been
reported on large scale coupled chaotic circuits such phase
synchronization, phase propagation and frustration of os-
cillation and so on [12]-[14].

In this study, several phase patterns and multimode asyn-
chronous oscillations on the coupled MSCCs are investi-
gated. There is a typical three dimensional autonomous
chaotic system, which consists of three memory elements,
some diodes and designed negative resistors. It is well
known that it can behave as Rössler type chaotic motion.
We substitute a symmetrical continuous segments piece-
wise linear resistor for the negative active resistor including
in the original chaotic circuit. This proposed circuit can be-
have both chaotic and periodic oscillations in the same pa-
rameters when we supply with different initial conditions.
In this paper, phase synchronization and classification of
several phase patterns in some MSCCs coupled by induc-
tors as a ring are investigated. Several types of phase syn-
chronization modes are confirmed asynchronously, but all
circuit parameters are the same.

2. Model Description

The circuit shown in Fig. 1 is modified chaotic circuit
from a well–known three dimensional chaotic circuit [15].
The original circuit consists of three memory elements,
some diodes and designed negative resistors. It is well
known that it can behave as Rössler type chaotic motion.
We substitute a symmetrical piecewise linear resistor for
the negative active resistor including in the original chaotic
circuit. Further this circuit possesses another symmetrical
piecewise nonlinear resistor with respect to the origin.

At first, we approximate thei − v characteristics in the
part of both diodes andE1 by the following three-segment
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Figure 1: Based chaotic circuit with piecewise linear resis-
tors.
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Figure 2: Design for sawtooth nonlinear resistor with re-
spect to the origin.

piecewise linear functionsvd(iL2k).

vd(iL2k) =
1
2

(rsiL2k + Vd − |rsiL2k − Vd|) (1)

where threshold voltageVd is realized by the total of
threshold of the diodes andrs is a resistance value at the
parallel diode in while off state. The variablevd(iL2k) de-
termines their chaotic dynamics.

In this study, we substitute a symmetrical continuous
piecewise linear resistor for the negative active resistor in-
cluding in the chaotic circuit. The designed chaotic circuit
is shown in Fig. 2. The piecewise linear resistor can be eas-
ily constructed by combining some components in parallel
[8][10]. By changing the following variables and parame-
ters as follows

iL1 =
√

C

L1
Vd x , iL2 =

√
C

L1
Vd y ,

v = Vd z , t =
√

L1C dτ , “ · ” =
d

dτ
,

β =
L1

L2
, γ = g

√
L1

C
, δ = rs

√
C

L1

(2)

whereg is a linear negative conductance value ofNR if
we consider the negative resistor as an ideal. Consider that
the part of negative resistanceNR in Fig. 1 replaces to the
functionh(z) represented by a voltage sourcez as canoni-
cal form. When we choseVd for a threshold voltage value

of the diodes, then the circuit equations can be rewritten by




ẋ = z

ẏ = β
(
z − f(y)

)

ż = −(x + y)− h(z)
(3)

f(y) =
1
2
{|δy + 1| − |δy − 1|}, (4)

and

h(z)=m0γ
∗z+

γ∗

2

{

K∑

k=0

(mk−mk+1)
{|z−pk+1|−|z+pk+1|

}} (5)

wheref(y) is a function of the currenty and h(z) is a
function of the voltagez, respectively. The functionh(z)
which is designed for several segment piecewise linear as
symmetric with respect to the origin. The parameterγ∗ is
used for a basic common value, hence the valuesmk(k =
0,1,2,· · ·,K) mean magnitude of the slope to the ratio for
γ∗.

The detailed schematic design how to construct had been
explained and the circuit settings are put in their figures’
caption [8]-[11]. As a result, both chaotic and periodic at-
tractors can be observed in the same circuit parameters. In
the previous work, we could confirm that both chaotic and
non-chaotic attractors coexist in the same parameters. If
the sawtooth nonlinear resistor in the circuit was improved
to have several segments, we can confirm coexistence of
several attractors in the same parameters. Figure 3 also
shows a typical chaotic attractor obtained for the parame-
tersβ = 10.0, γ∗ = 0.78, δ = 100, with piecewise lin-
ear characteristics realized by breakpointsp1 = 0.65,p2 =
0.55,p3 = 0.40,p4 = 0.30, slopesm0 = −1.0, m1 = 2.0,
m2 = −1.0, m3 = 1.0 andm4 = −0.15. We can confirm
that both chaotic and two periodic attractors coexist in the
same parameters. It is different from the previous work that
we could confirm coexistence of chaotic attractor and two
different size of limit cycles in this circuit.

3. Simulation for coupled MSCCs

We now consider the coupled model which combined
number ofN chaotic circuits are connected by inductors
L0 as a ring structure. The chaotic circuits are composed
by all the same parameters. Therefore when we choose a
threshold voltage valueVd as a criterion, the circuit equa-
tion of coupled MSCCs can be normalized by changing the
variables (2) and a new parameterα = L1/L0, then the
entire circuit equations can be rewritten by





ẋk = zk

ẏk = β
(
zk − f(yk)

)

żk = α(xk−1 − 2xk + xk+1)
−(xk + yk)− h(zk)

(6)

In this section, the model of coupled MSCCs by induc-
tors are investigated. We show some computer calculation
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Figure 3: Drawing attractor onto thez−x plane and 3-D trajectories for the parametersβ = 10.0, γ∗ = 0.78 andδ = 100.
h(z): {p1, p2, p3, p4}={0.65, 0.55, 0.40, 0.30}, {m0, m1, m2, m3, m4} = {-1.0, 2.0, -1.0, 1.0, -0.15}.

results by using 4-th order Runge–Kutta method with time
step size∆t = 0.001 for the circuit equation (6), (4) and
(5) in some cases ofN = 2 ∼ 7 as follows.

3.1. Two subcircuits caseN = 2

Now we consider that the number of the coupled MSCCs
is two. This case is similar to the model in the sense of co-
existence of chaotic and periodic oscillations for the previ-
ous work [10]. Although the detail results are omitted, we
can confirm several types of phase synchronization modes
in this model. In this case, some asynchronous oscillation
modes could be confirmed consequently by numerical sim-
ulations when the initial conditions are varied. We could
observe two different limit cycles by their oscillation size;
in-phase synchronous limit cycles, anti-phase synchronous
limit cycles, anti-phase chaotic synchronous state, and mul-
timode oscillations in the same parameters.

3.2. Three or more subcircuits caseN ≥ 3

In this section, we consider the case ofN = 3. The
circuit parameters in each MSCC are set as all the same
parameters in the section 2 with additional parameterα =
0.50. Compare with the caseN = 2, several different syn-
chronization phenomena can be found. Because all types
of the results can not be represented, some simulation re-
sults are only shown here. Figure 5(a) shows a case of in-
phase synchronization of three limit cycles. From top of
the figure, attractors drawing ontoz–x plane, synchroniza-
tion state ofzk–zk+1 plane, and waveform of difference
between the two variableszk−zk+1. Figure 5(b) shows in-
phase chaotic synchronization and pair of double-mode os-
cillation. They are corresponding normally to three phase
synchronization in generic oscillators. We could confirm to
coexist a lot of synchronization modes.

In large coupled systems forN ≥ 4, it is easily expected
to be confirmed more complex behavior. We now show
only some results in Fig. 5 for the case ofN = 4 and 7. In
the case ofN = 4, several types of synchronization modes
are confirmed. Figure (c) shows two-pair of in-phase and
anti-phase synchronization of limit cycles. Further, figure
(d) shows a new type of synchronization mode applicable
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Figure 4: Coupled model of chaotic circuits by several in-
ductors as a ring.

to no other one. In the case ofN = 7, no much many
synchronization modes have confirmed in such parameter
settings. Figures (e) and (f) show typical simulation results
for a large number ofN . However when the number ofN
is large and the circuit parameters should be set appropri-
ately, a certain kind of phase propagation phenomena may
be confirmed. Thus, several complex behavior could be
also confirmed in the coupled multi–state chaotic oscilla-
tors.

4. Conclusions

In this study, we have investigated several synchroniza-
tion modes in coupled multi–state chaotic circuits. Coex-
istence of several types oscillation modes have been con-
firmed in coupled MSCCs by inductors as a ring for sev-
eral cases. On large scale coupled chaotic circuits such a
scale-free network, we consider that several types of com-
plex behavior are expected to yield novel chaotic phenom-
ena e.g., chaotic itinerancy, spatio–temporal chaos, multi–
agent systems, soliton like wave propagation phenomena,
and inherent emergent property, in which concerned with
other current topics.
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Figure 5: Some simulation results obtained from coupled three, four and seven MSCCs forα = 0.50,β = 10.0,γ∗ =
0.78,δ = 100. h(z): {p1, p2, p3, p4}={0.65, 0.55, 0.40, 0.30}, {m0, m1, m2, m3, m4} = {-1.0, 2.0, -1.0, 1.0, -0.15}.
(a) in-phase synchronization, (b) double-mode and one-pair synchronization, (c) two-pari anti-phase synchronization, (d)
two-pair double-mode and anti-phase synchronization, (e) seven-phase synchronization, and (f) multimode oscillation.
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