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Abstract—This paper studies amplitude death in de-
layed chaotic systems which are described by single scalar
delay-differential-equations. They are coupled by three
types of diffusive connections, such as normal, delayed, dy-
namic connections. A simple sufficient condition for avoid-
ing death is derived. This condition is valid for delayed and
dynamic connections. Numerical examples verify the suf-
ficient condition.

1. Introduction

There have been various investigations of coupled non-
linear systems from the viewpoints of academic interests
and practical applications [1]. Amplitude death in cou-
pled nonlinear systems was considered as an attractive phe-
nomenon [2, 3]. This phenomenon is a coupling-induced
stabilization of a fixed point in the couplednonidentical
oscillators. Furthermore, it is guaranteed that death never
occurs in coupledidenticalsystems [3].

Reddy, Sen, and Johnston showed that death in coupled
identicalsystems can be induced by a time-delay connec-
tion [4]. The delay-connection induced death has attracted
a growing interest in the field of nonlinear dynamics [5]. It
was observed experimentally in electronic circuits [6] and
thermo-optical oscillators [7]. The theoretical analysis has
been achieved by several researchers: stability of death in
coupled simple oscillators near Hopf bifurcations [8], a suf-
ficient condition (called theodd number property) under
which death never occurs [9, 10], oscillators coupled by a
one-way connection [11], death induced by dynamic con-
nections [12], distributed delay effect [13], total and par-
tial death in networks [14], coupled chaotic oscillators [15],
and a ring of coupled limit cycle oscillators [16, 17].

Delayed chaotic systems described by single scalar
delay-differential-equations have been widely used to study
the infinite dimensional nonlinear phenomena [18]. In re-
cent years, the coupled delayed-chaotic systems have cre-
ated considerable interest from the viewpoints of synchro-
nization [19], communication schemes [20], anticipation
[21].

There have been few efforts to study the amplitude death
in coupled high-dimensional chaotic systems. The present
paper focuses on the delayed chaotic systems (i.e., hyper
chaotic systems) coupled by three types of diffusive con-
nections, such as normal connection, delayed connection
[4, 10], and dynamic connection [12]. In electrical oscilla-

Figure 1: Nonlinear function and fixed points.

tors, these connections corresponds to resistance coupling,
delay-line coupling, and resistance-capacitance coupling
[12]. The previous study [10] provided a simple sufficient
condition under which death in identicalm-dimensional
systems coupled by the delay connection never occurs for
any coupling strength and delay time. The present paper
also derives a simple sufficient condition for avoiding death
in delayed chaotic systems coupled by three type connec-
tions.

2. Delayed chaotic systems

Let us consider two identical delayed-chaotic systems
{

ẋ1 = −αx1 + f(x1−τ ) + u1

ẋ2 = −αx2 + f(x2−τ ) + u2
, (1)

wherex1,2 ∈ R are the system states,f : R → R is the
nonlinear function,x1,2−τ := x1,2(t − τ) are the delayed
states,u1,2 ∈ R are the coupling signals.α > 0 is the
parameter. The fixed point of individual chaotic system
without coupling (i.e.,u1,2 ≡ 0) is given by

x∗ : 0 = −αx∗ + f(x∗). (2)

Figure 1 illustrates the nonlinear functionf and the line
αx. The fixed pointx∗ is located at the intersections of
f andαx. It is assumed that the individual chaotic system
without coupling behaves oscillatory or chaotically (i.e.,x∗

is unstable) throughout this paper.
This paper focuses on the three diffusive connections:

normal connection, delayed connection [4, 10], and dy-
namic connection [12]. Figure 2 sketches the delayed
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Figure 2: Illustration of delayed chaotic systems coupled
by diffusive connections.

chaotic systems coupled by the diffusive connections.
These connections illustrated in Fig. 3 are described as fol-
lows.

Normal connection(Fig. 3(a)):

u1,2 = k(x1,2 − x2,1). (3)

Delayed connection(Fig. 3(b)):

u1,2 = k(x1,2 − x2,1−T ). (4)

Dynamic connection(Fig. 3(c)):
{

u1,2 = k(x1,2 − z)
ż = γ(x1 + x2 − 2z) . (5)

The delayed states are denoted byx2,1−T := x2,1(t − T ),
andγ > 0 is the parameter.T ≥ 0 is the delay time for
coupling. It should be noted that these connections change
the stability of the fixed pointx∗. However, they never
move its location. The amplitude death can be explained as
a diffusive-connection induced stabilization of the unstable
fixed pointx∗.

3. Stability analysis

The stability of the fixed pointx∗ in the delayed chaotic
systems coupled by normal (3), delayed (4), and dy-
namic (5) connections is investigated. The linear stabil-
ity analysis allows us to obtain the characteristic equation
g(1)(λ)g(2)(λ) = 0, whereg(1)(λ) andg(2)(λ) depend on
the connection type as follows.

Normal connection:

g(1)(λ) = λ + α − β(x∗)e−λτ ,

g(2)(λ) = λ + α − 2k − β(x∗)e−λτ .

Delayed connection:

g(1)(λ) = λ + α − k(1 − e−λT ) − β(x∗)e−λτ ,

g(2)(λ) = λ + α − k(1 + e−λT ) − β(x∗)e−λτ .

(a) Normal connection

(b) Delayed connection

(c) Dynamic connection

Figure 3: Block diagrams of three-type diffusive connec-
tions.

Dynamic connection:

g(1)(λ) = λ + α − k − β(x∗)e−λτ ,

g(2)(λ) = det
[
λ + α − k − β(x∗)e−λτ 2k

−γ λ + 2γ

]
.

β(x∗) := {df(x)/dx}x=x∗ is the slope off(x) at x∗.
From these characteristic equations, a simple instability
condition can be easily derived.

Lemma 1. The amplitude death at the fixed pointx∗

never occurs in delayed chaotic systems coupled by nor-
mal connection (3) for anyk ∈ R.

Proof. It is noticed thatg(1)(λ) = 0 is identical with
the characteristic equation of the individual chaotic system
without coupling. According to our assumption (i.e.,x∗

without coupling is unstable),g(1)(λ) = 0 has at least one
root in open right half complex plane. Sinceg(1)(λ) does
not depend onk, death never occurs for anyk ∈ R.

This lemma can be considered as an extension of Lemma
1 in [10] to delayed chaotic systems. These results indicate
that the normal diffusive connection never induces the am-
plitude death whether individual system includes delayed
state or not.
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According to the previous results in [10], we know the
fact that if limλ→+∞ h(λ) = +∞ and h(0) < 0, then
there exits at least one positive real root forh(λ) = 0. This
fact leads us to obtain the following two theorems.

Theorem 1. If α < β(x∗), then the amplitude death at
the fixed pointx∗ never occurs in delayed chaotic systems
coupled bydelayedconnection (4) for anyk ∈ R, T >
0, andτ ≥ 0.

Proof. It is obvious that limλ→+∞ g(1)(λ) = +∞.
g(1)(0) = α − β(x∗) does not depend onk, T, τ . If
g(1)(0) < 0, theng(1)(λ) = 0 has at least one positive
real root. Therefore, the amplitude death never occurs for
anyk, T , τ whenα < β(x∗) holds.

Theorem 1 is an extension of Theorem 2 in [10] to
delayed chaotic systems; hence,α < β(x∗) corresponds to
the odd number property in [10].

Theorem 2. If α < β(x∗), then the amplitude death at
the fixed pointx∗ never occurs in delayed chaotic systems
coupled bydynamic connection (5) for anyk ∈ R, γ >
0, andτ ≥ 0.

Proof. It is clear thatlimλ→+∞ g(1)(λ) = +∞. The pa-
rametersk, γ, τ are independent ofg(1)(0) = α − β(x∗).
Theng(1)(λ) = 0 has at least one positive real root for any
k ∈ R, γ > 0, τ ≥ 0 wheng(1)(0) < 0. Therefore, the
amplitude death never occurs ifα < β(x∗).

This theorem is also an extension of the previous result
in [12]. Remark that these theorems provide just sufficient
condition for avoiding death. In other words, whenα >
β(x∗) is held, the theorems cannot guarantee whether death
occurs or not.

Now we consider the case where the number of delayed
chaotic systems is one. In this case, death induced by
delayed connection (4) and dynamic connection (5) can be
regarded as a stabilization of delayed chaotic systems by
delayed feedback control and dynamic feedback control
[22] respectively. From Theorems 1 and 2, we can easily
derive the following result.

Corollary 1. Consider a single delayed-chaotic system:

ẋ = −αx + f(xτ ) + u.

If α < β(x∗), then the fixed pointx∗ is not stabilized by
delayed feedback control,

u = k(x − xT ),

for anyk ∈ R, T > 0, τ ≥ 0. In addition, ifα < β(x∗),
thenx∗ is not stabilized by dynamic feedback control,

u = k(x − z), ż = γ(x − z),

for anyk ∈ R, γ > 0, τ ≥ 0.
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Figure 4: Amplitude death in the delayed chaotic systems
coupled by delayed connection (k = −6, T = 1.55).

4. Numerical examples

Let us employ the following nonlinear function:

f(x) =





0 x ≤ −4/3,
−1.8x − 2.4 −4/3 < x ≤ −0.8,
1.2x −0.8 < x ≤ 0.8,
−1.8x + 2.4 0.8 < x ≤ 4/3,
0 x > 4/3.

It was reported that the hyperchaos occurs in Eq. (1) with-
out coupling atα = 1.0 andτ = 10.0 [23]. The functionf
has the three fixed points:

x∗ = −6/7, 0, +6/7.

For the fixed pointsx∗ = ±6/7, the slope off at x∗ is
β(x∗) = −1.8. As Theorems 1 and 2 are not satisfied, it
cannot be guaranteed whether death occurs or not. On the
other hands, the slope atx∗ = 0 is β(x∗) = 1.2. Since
Theorems 1 and 2 are satisfied, we notice that delayed (4)
and dynamic (5) connections never induce death atx∗ = 0
for anyk, T , τ , γ.

Figure 4 shows the statex1 and the coupling signalu1

of Eq. (1) with delayed connection (4). It can be seen
that death occurs atx∗ = +6/7. Furthermore, as shown
in Fig. 5, x1 andu1 in Eq. (1) with dynamic connection
(5) converge onx∗ = +6/7 andu1 = 0 respectively. From
these observations, we see that delayed (4) and dynamic (5)
connections induce death atx∗ = +6/7, but not atx∗ = 0.
These numerical results do not contradict Theorems 1 and
2.

5. Conclusions

This paper investigates the amplitude death in the de-
layed chaotic systems coupled by three types of diffusive
connections. A simple sufficient condition for avoiding
death is derived. It is shown that the condition is valid for
the numerical examples.
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Figure 5: Amplitude death in the delayed chaotic systems
coupled by dynamic connection (k = −5, γ = 0.2).
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