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Abstract—Differential pulse code modulation (DPCM)
is one of the most popular methods to compress image sig-
nals. Although the DPCM generally works well, it could
be flawed, because the DPCM predicts pixel values only
by a linear function. Thus, the prediction errors might be-
come large. In this paper, we proposed a nonlinear predic-
tion method that incorporates the DPCM and a radial basis
function (RBF) network. The proposed nonlinear predic-
tion method reduces prediction errors of the DPCM by the
RBF network. We confirmed that proposed method reduces
prediction errors of the DPCM and average bit rates by nu-
merical simulation to several standard images.

1. Introduction

Compression of image signals is inevitable to realize
effective communication between end users. Differential
pulse code modulation (DPCM) is one of the most popu-
lar methods to compress the image signals [1]. Because
image signals generally have strong autocorrelation, the
DPCM exhibits good performance. However, it has an in-
trinsic disadvantage: the DPCM only uses a linear func-
tion to predict pixels of an image, then prediction accuracy
around edges of the image often decreases due to extreme
change of the pixel values. To avoid such undesirable situ-
ation, several methods that improve prediction accuracy by
adding nonlinear terms to the DPCM have been proposed
[2, 3, 4]. Although these conventional methods often work
well, they need a lot of computational complexity, because
they use a supervised learning of a neural network. In this
paper, we proposed a nonlinear prediction method with ra-
dial basis function (RBF) networks. Because the parame-
ters of the RBF network can be decided using a least-square
method, the computational complexity of the RBF network
can be more reduced than that of a neural network with
supervised learning. Thus, we proposed a nonlinear pre-
diction method that combines the DPCM and the RBF net-
work.

The proposed method has two essential parts. The first
part is composed of the linear prediction using the DPCM
applied to an image signal and the prediction errors of the
DPCM are calculated. The second part is composed of a
nonlinear prediction by the RBF. In the second part, the
prediction errors of the DPCM are divided into three sets.
This is a key point to predict prediction errors of the DPCM
using the RBF network more efficiently. Next, nonlinear

prediction using the RBF network is applied to prediction
errors of the DPCM and the prediction errors of the RBF
network are calculated. Finally, the prediction errors of the
RBF network are encoded by the Huffman coding and av-
erage bit rates of the compressed image data are calculated.
As a result, the proposed method shows high peak signal to
noise ratio (PSNR) that quantifies prediction accuracy.

2. Differential pulse code modulation

The DPCM that predicts pixel values using their neigh-
bor pixel values of horizontal and vertical directions is
called two-dimensional (2-D) DPCM. Location of a pre-
dicted pixel p0 and its neighbor pixels are shown in Fig.1.
Here, a predicted value p̂0 of the pixel p0 predicted by the
2-D DPCM is defined by

p̂0 =

M∑

m=1

am pm (1)

where am (m = 1, 2, . . . ,M) is the m-th coefficient, pm is
a pixel value, and M is the number of pixels used by the
prediction.
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Figure 1: Pixel location of 2-D DPCM.

Then, the prediction error ε0 by 2-D DPCM is defined as

ε0 = p0 − p̂0

= p0 −

M∑

m=1

am pm. (2)

In the DPCM, these prediction errors are encoded. The
coefficients are generally obtained by minimizing mean
squared error of the prediction errors using least-square
method.
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3. Radial basis function network

In the RBF network, a nonlinear function is approxi-
mated by a sum of basis functions. The RBF network is
defined by

ŷn =

Q∑

h=1

chG(xn − θh)

=

Q∑

h=1

ch exp(−αh|xn − θh|
2) (3)

where ŷn (n = 1, 2, . . . ,N) is an output value, G is a basis
function, and xn is the D-dimensional input vector defined
as

xn = (xn1 , xn2 , . . . , xnD ) (4)

where xn1 , xn2 , . . . , and xnD are pixel values used to approx-
imate yn. In this paper, Gaussian function is used as a basis
function. Q is the number of the basis functions that ap-
proximate the nonlinear function, ch is the height of the
basis function, αh is the spread of the basis function, θh

is the central coordinate of the basis function. These pa-
rameters can be calculated by the least-square method. A
schematic example of approximating a nonlinear function
form by the RBF network is shown in Fig.2 in case that
D = 1, and Q = 2.
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Figure 2: How to approximate a nonlinear function (the
blue curve) by the RBF networks (red curves).

4. Proposed method

In this section, we explain the proposed method. The
proposed method reduces prediction errors of the DPCM
by the RBF network. The flow chart of the proposed
method is shown in Fig.3 where P.E. means the prediction
errors.

In the proposed method, at first, the linear prediction by
the DPCM is applied to the image data and the prediction
errors of the DPCM are calculated. Prediction error be-
tween predicted value p̂0 and the true value p0 is defined
by Eq.(2).

Next, input vectors applied to the RBF network are com-
posed by an arbitrary combination of the prediction er-
rors of the DPCM. Location of the prediction errors of the
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Figure 3: Flow chart of the proposed method.

DPCM are shown in Fig.4. For example, an M-dimensional
input vector x0 applied to the RBF network to predict ε0 is

x0 = (ε1, ε2, . . . , εM). (5)
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Figure 4: Location of the prediction errors by the DPCM.

Then, the prediction errors of the DPCM are divided into
three groups with a threshold value T as follows;

1. ε0 > 0, |ε0| > T

2. ε0 < 0, |ε0| > T

3. |ε0| ≤ T
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Figure 5: An example of dividing the prediction errors of
the DPCM.

An example of this procedure is shown in Fig.5. The
procedure described above is a process to apply a nonlinear
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prediction method using RBF networks to the prediction
errors whose absolute values are large. It means that the
prediction efficiency using the RBF network becomes high.

Next, the nonlinear prediction by the RBF network is
applied to the positive and negative prediction errors of the
DPCM whose absolute values are larger than the thresh-
old T . Then, the prediction errors of the RBF network are
calculated. The prediction error η0 of the RBF network is
defined as

η0 = ε0 −

Q∑

h=1

ch exp(−αh|x0 − θh|
2) (6)

where Q is the number of the basis functions, ch is the
height of the basis function, αh is the spread of the basis
function, θh is the position of the h-th radial basis func-
tion. Finally, the prediction errors of the RBF network are
encoded by Huffman coding. Then, average bit rate is cal-
culated.

Using this proposed method, the dynamic range of the
prediction errors is much reduced. The image data is re-
stored by these prediction errors and parameters of the
DPCM and RBF network.

5. Experimental conditions

To evaluate performance of the proposed method, we
used standard image data base (SIDBA). In the experi-
ment, we use three standard images from SIDBA: Cam-
eraman, Lenna, and Lighthouse. The size of these images
is 256× 256 pixels and they have 8-bits resolution. Predic-
tion accuracy is estimated by the peak signal to noise ratio
(PSNR) S defined as

S = 10 log10
2552

σ2
ε

[dB] (7)

where σ2
ε

is the mean square error of the RBF network.
The number of the basis functions in the RBF network,

Q, is set to five, considering a good balance between the
prediction performance and CPU time of calculation. Re-
lation between the number of the basis functions and CPU
time for Lenna is shown in Fig.6. When the number of the
basis function is set to five, high performance of the predic-
tion can be obtained by short CPU time. Then, we fix the
number of RBF functions to five. As the pixel values used
by the DPCM and the prediction errors used by the RBF
network, all combinations of seven values in Figs.1 and 4
are used.

6. Experimental results

The results are shown in Table 1. Three results are the
best performance among all combinations of pixel values
used by the DPCM and the RBF network.
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Figure 6: Relation between the number of the basis func-
tions and CPU time for Lenna. The left vertical axis shows
S [db], and the right vertical axis shows CPU time.

Table 1: Results of PSNR.

PSNR [dB]
Image 2-D DPCM Proposed method
Lenna 28.3 34.2
Cameraman 24.9 30.2
Lighthouse 22.8 29.0

Table 2: Results when average bit rate is minimum.

PSNR Bit rate PSNR Bit rate
Image [dB] [bits/pel] [dB] [bits/pel]

2-D DPCM Proposed method
Lenna 28.3 4.43 31.9 4.41
Cameraman 24.9 4.68 25.8 4.68
Lighthouse 22.8 4.85 23.0 5.46

From Table 1, the prediction accuracy using the RBF
network is higher than that of the DPCM. The original im-
age of Lenna is shown in Fig.7(a). An image representa-
tion of prediction errors only by the DPCM is shown in
Fig.7(b). The brighter pixels indicate that the prediction
errors are large. The prediction error image obtained by
the proposed method is shown in Fig.7(c). The predic-
tion errors of the proposed method are reduced more than
Fig.7(b).

Next, Table 2 shows the results when each average bit
rate becomes minimum for all combinations of the pixel
values by the DPCM and the RBF network. From Table
2, when the proposed method is applied to Lenna, it is seen
that the prediction accuracy is improved and the average bit
rate is reduced compared to that of the DPCM. Prediction
error image by the proposed method is shown in Fig.7(d).
When the proposed method is applied to Cameraman, it
is seen that the prediction accuracy is improved, but the
average bit rate exhibits almost the same performance as
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the DPCM. When the proposed method is applied to Light-
house, the prediction accuracy is improved slightly, but the
average bit rate is increased compared to that of the DPCM.
Because the proposed method divides the prediction errors
of the DPCM into three groups, the amount of informa-
tion to encode may increase. In particular, the performance
of the nonlinear prediction is not very good when the pro-
posed method is applied to Lighthouse.
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(a) Original
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(b) Error image by the
DPCM
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(c) Error image by the pro-
posed method when PSNR
is maximum
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(d) Error image by the pro-
posed method when the av-
erage bit rate is minimum

Figure 7: Results by the proposed method (Lenna). Here,
the values of the pixels are set to four times prediction er-
rors to confirm the prediction errors easily.

To compare the performance of the proposed method
with those of the conventional methods [2, 4], the exper-
imental condition of the proposed method is set to same as
the conventional methods.

We compared the performance to the conventional
method by J. Li et al. [2], and the proposed method are
shown in Table 3. To compare the performance fairly, the
one-dimensional DPCM using the pixel values of only hor-
izontal direction is used as a linear prediction, the number
of the pixel values used by the DPCM is one, and the num-
ber of the pixel values used by a nonlinear prediction is
four. In Table 3, it is seen that the prediction accuracy of
the proposed method is higher than that of the conventional
method [2].

We compared the results by S. A. Dianat et al. [4] (Table
4). In this comparison, the 2-D DPCM is used as a lin-
ear prediction, the number of the pixel values used by the
DPCM and a nonlinear prediction is three. In Table 4, it is
seen that the prediction accuracy of the proposed method is
again higher than that of the conventional method [4].

Table 3: Comparison of the conventional method by J. Li
et al. [2], and the proposed method.

PSNR [dB]
Image Conventional method Proposed method
Lenna 27.22 29.09

Table 4: Comparison of the conventional method by S. A.
Dianat et al. [4], and the proposed method.

PSNR [dB]
Image Conventional method Proposed method
Lenna 31.20 32.01

7. Conclusions

In this paper, we proposed a nonlinear prediction method
that combines the DPCM and the RBF network. We ap-
plied the proposed method to image data from SIDBA and
calculated prediction accuracy and average bit rate. As a re-
sult, we confirmed that the proposed method improves the
prediction accuracy and average bit rates compared to the
conventional methods, however, we also confirmed a result
that the average bit rates increased. The research of TI is
partially supported by Grant-in-Aid for Scientific Research
(B) from JSPS (No.17500136 ).
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