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Abstract—We analyze the performance of a distributed
sensor network which fuses the detection results from mul-
tiple binary detectors at a single data fusion center in the
presence of noise. We show the property of noise-assisted
detection, whereby the detection correctness probability
can be improved by adding noise. We point out that this
property can be observed when the data fusion is not opti-
mal, even when each detector has an optimal threshold. We
also show the nonmonotonic behavior of noise-assisted de-
tection for increasing added noise. Here we consider a sim-
ple model of distributed detection (DD) in which the detec-
tion result depends on the outputs of multiple identical sig-
nal detectors with common signal and independent noise.
DD decides its output based on the rule of data fusion exe-
cuted at the data fusion center which receives outputs from
all detectors. Noise-assisted detection means that the cor-
rectness probability can be larger with noise compared to
without noise. It also means that it may be possible to op-
timize correctness probability by adjusting the intensity of
noise. Noise-assisted detection is known to occur for sub-
optimal detectors, and so can also be expected to occur for
DD with non-optimal detectors. However, we show that
noise-assisted detection in DD can occur even with opti-
mal detectors if the rule of data fusion is suboptimal. This
result is significant from the point of view of optimizing the
whole system including noise levels to optimize detection.

1. Introduction

Noise-assisted effects in nonlinear systems have recently
received considerable attention. In particular, stochastic
resonance (SR) has been studied in various systems [1]. SR
means that the resonance response of a nonlinear system to
a subthreshold signal can be optimized by adding noise.
It is considered that sensors in biological system may use
this SR to detect signals in noisy environments. Informa-
tion theoretical approaches have been used to study SR of
aperiodic signals, for binary signals [2-11]. In these stud-
ies, bit error probability or mutual information is used to
measure transmission between input and output.

SR in a threshold system with a signal and noise is

closely related to the signal detection problem [7, 8, 10]
in classical engineering studies [12]. Here we consider the
signal detection problem in which the signal is binary (0, 1)
and noise has continuous values. Signal detection deter-
mines from the noisy input whether the signal’s value is
0 or 1. Full knowledge about the signal level and noise
can be used to obtain the optimal detector by calculating
the optimal threshold. The optimization criterion is gener-
ally the minimal Bayesian risk or the maximal correctness
probability.

An optimal detector with an optimal threshold shows
monotonic decay of correctness probability with increas-
ing noise intensity. On the other hand, when the threshold
of the detector is suboptimal, increasing the noise intensity
can maximize the probability of correctness detection [13].
We call this noise-assisted detection. One of the reasons
why we may need to use detectors with suboptimal thresh-
olds is that we do not have full knowledge about the signal
and noise. When the threshold is estimated from the partial
knowledge, the threshold may be suboptimal.

Here we consider noise-assisted detection in sensor
networks and especially focus on distributed detection
(DD) [14-16]. Simple DD has multiple detectors working
in parallel and decides global output at a data fusion cen-
ter based on the local decisions gathered from each detec-
tor. For simplicity, we assume that the local detectors are
identical and each detector has a common signal and inde-
pendent noise. When the local detector output is binary,
the input-output rule of the data fusion becomes a Boolean
function.

We can expect that there is noise-assisted DD when the
detectors have suboptimal thresholds. However we can also
show noise-assisted DD, even when each detector has the
optimal threshold with respect to the signal and noise, when
the data fusion rule is not optimal. Specifically, we show
noise-assisted DD, even when each detector has the opti-
mal threshold with respect to the signal and noise, when
the data fusion rule is not defined by a monotonic function
of the number of detectors, which detect the existence of
signal. Such cases occur for example when receiving too
many detections from local detectors is judged by the fu-
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sion center to be a malfunction state of the system.

2. Noise-assisted detection

A threshold system is a typical system exhibiting SR.
Classification by threshold systems is equivalent to the de-
cision task in signal detection [12] whether there is a dc
signal or not in noise. As in Ref. [9, 10], we consider the
following signal detection problem. A binary input signal
has values 0 (input 0) and 1 (input 1) and prior probabilities
for each input bit are defined as p0 and p1(= 1 − p0), re-
spectively. Noise is Gaussian with mean 0 and variance σ2.
We define P0(x) and P1(x) as two probability distributions
corresponding to the inputs 0 and 1 with added noise, re-
spectively. Detection of the signal with noise corresponds
to determining that the input signal is 0 or 1 by comparing
with a threshold.

Here we define p00 as probability that input 0 is detected
correctly and also define p10 as probability that input 0 is
detected as input 1. p01 and p11 for input 1 are defined
similarly. These probabilities can be calculated for signal
detection case threshold θ as follows.

p00 =

∫ θ

−∞

P0(x)dx = 1 − p10,

p10 =

∫ ∞

θ

P0(x)dx,

p01 =

∫ θ

−∞

P1(x)dx, (1)

p11 =

∫ ∞

θ

P1(x)dx = 1 − p01.

We note that p00, p10, p01, and p11 are functions of σ, be-
cause P0(x) and P1(x) have Gaussian distributions.

To evaluate the dependence of signal detection on noise
intensity σ, we can define correctness probability as fol-
lows.

Pcor(σ) = Pcor(p0, p1, p00, p11)

= p00 p0 + p11 p1. (2)

We note that the probabilities are functions of σ.
Standard signal detection techniques assume complete

knowledge concerning the values (levels, amplitudes) of
the binary signals and so we can calculate the optimal
threshold θopt to maximize correctness probability. How-
ever, when the values of the binary signals are unknown,
we cannot know for sure the optimal threshold.

When we determine the threshold from an estimation of
the binary signal values, the threshold may be suboptimal.
When the value θ is larger than the true value of input 1
(or smaller than the value of input 0) in the case of p0 =

p1 = 1/2, existence of noise can assist the detection. This
is noise-assisted signal detection. Biological sensors that
work in noisy environment can make use of this mechanism
for noise-assisted detection.

We have shown an example of a system with a subop-
timal threshold, in which there is a maximum of correct-
ness probability at non-zero noise intensity σ [17]. In other
words, a finite noise intensity σ can optimize the correct-
ness probability Pcor. In this example, we can see that the
optimal σ is non-zero when the threshold is located on a
value larger than the value of input 1 or smaller than the
value of input 0.

When the threshold is optimal (in the example, θopt =
1/2), correctness probability decreases monotonically
against noise intensity σ. In other words, noise degrades
the detection by an optimal threshold. Here we note that
the correctness probability for suboptimal threshold never
exceeds the correctness probability for the optimal thresh-
old, as shown by the data processing inequality [18].

3. Distributed detection

DD [14, 15, 16] in sensor networks gathers local outputs
of multiple detectors to detect a signal. Here we consider
simple DD that has detectors working in parallel and de-
cides global output at a data fusion center based on the
local decisions from each detector as in Fig. 1. For sim-
plicity, we assume that the local detectors are identical and
each detector has a common signal and independent noise.
When the local detector output is binary, the input-output
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Figure 1: Distributed detection. Simple DD system is com-
posed of multiple local detectors and a data fusion center.

rule of the data fusion becomes a Boolean function.
One of the important issues in sensor networks is opti-

mization of the data fusion rule when the local detectors
are identical [15]. This simplification is required to reduce
computation and to control sensor networks easily in the-
ory, application and implementation. Here we consider K-
out-of-N fusion rule, i.e., the global decision u0 = 1 if K or
more local decisions are equal to 1.

u0 =

{

1, if
∑N

i=1 ui ≥ K,
0, if

∑N
i=1 ui < K.

(3)

K is an integer threshold for the global decision. For each
detector, false alarm probability pF and detection probabil-
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ity pD is shown as follows.

pF = p(ui = 1|H0) = p10, (4)

pD = p(ui = 1|H1) = p11. (5)

Unknown hypotheses, H0 and H1 correspond to input 0 and
1, respectively. From false alarm and detection probability
of each detector, we can calculate system false alarm prob-
ability pF and system detection probability pD as follows.

PF =

N
∑

i=K

(

N
i

)

pi
F(1 − pF)N−i, (6)

PD =

N
∑

i=K

(

N
i

)

pi
D(1 − pD)N−i. (7)

The probability of correct detection with N detectors is as
follows.

Pcor = (1 − PF)p0 + PD p1. (8)

Varshney has examined K-out-of-N fusion rules and ob-
tained the optimal K value to minimize Bayesian risk [16].
Here, for simplicity, we consider the case of a homoge-
neous sensor network system of identical local detectors
with common signal and independent noise. In inhomoge-
neous sensor networks, it is necessary to decide the optimal
distribution of thresholds to optimize detection [19].

4. Noise-assisted distributed detection

We have explained that noise-assisted DD can be ex-
pected when the detectors have suboptimal thresholds with
respect to the signal and noise. Next, we show that noise-
assisted DD can occur even when the detectors have op-
timal thresholds, for some types of fusion rules. Specifi-
cally, we show an example of noise-assisted DD which can
occur when the fusion rule is not a monotonic function of
the number of detectors. (In practice, this case could oc-
cur, for example, when receiving too many detections from
local detectors is judged by the fusion center to be an indi-
cation that local detectors are broken and outputting false
detections.)

We consider the specific example of N = 2 and the EOR
(exclusive OR) fusion rule. We assume that the input sig-
nal to each local detector has discrete binary values 0 and
1 with probability p0 = 0.6 and p1 = 0.4, respectively,
and the input noise to local detectors has continuous values
obeying a Gaussian distribution N(0, σ2). We also assume
that the detection threshold of all detectors are the same and
adjusted according to the noise level, so that the threshold
is optimal θopt(σ) at each value of noise intensity σ. The i-
th detector’s output ui is 0 or 1. The fusion rule takes local
detector outputs ui and then decides binary global output
u0, such that u0 = 0 when u1 +u2 = 0 or 2 and u0 = 1 when
u1 + u2 = 1.

Figure 2 shows variation of correctness probability
Pcor(σ) as noise intensityσ increases. There is a maximum
value of correctness probability at a non-zero value of noise
intensity. When there is no noise, σ = 0, the correctness
probability Pcor(σ = 0) is just equal to the value of p0, i.e.
p0 = 0.6. With increases of σ, the correctness probability
Pcor(σ = 0) increases to a maximum and then asymptot-
ically approaches to the value of p0 again. This example
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Figure 2: Dependence of correctness probability Pcor(σ)
on noise intensity σ for a particular system of N = 2 de-
tectors. The solid line shows the correctness probability
obtained using an EOR (Exclusive OR) fusion rule, and the
dotted line shows the correctness probability obtained us-
ing an OR rule.

shows that we can see noise-assisted DD even when the lo-
cal detectors have optimal thresholds. This is not a singular
condition and we can find similar behavior for any N. For
other rules, such as the optimal OR rule that makes u0 = 0
when u1 + u2 = 0 and u0 = 1 otherwise, the correctness
probability is monotonic decreasing, i.e. no noise-assisted
detection is observed, as shown by the dotted line in Fig. 2.
Note that the correctness probability is less for the fusion
rule where noise-assisted detection is observed, than for the
fusion rule where noise-assisted detection is not observed.
In this sense, noise-assisted detection occurs for subopti-
mal fusion rule.

5. Conclusions

We analyzed the performance of distributed detection in
a sensor network which fuses the detection results from
multiple binary detectors at a single data fusion center. We
showed the property of noise-assisted detection and pointed
out that this property can be observed when the data fu-
sion is not optimal, even when each detector has an optimal
threshold. We also showed the nonmonotonic behavior of
noise-assisted detection for increasing added noise, and the
existence of an optimal level of noise.

We analyzed the performance of distributed detection in
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a sensor network which fuses the detection results from
multiple binary detectors at a single data fusion center. We
described the property of noise-assisted detection in this
context and pointed out that this property can be observed
even when each detector has an optimal threshold. We
presented a particular example of a fusion rule for which
the sensor network exhibits noise-assisted detection, and
showed nonmonotonic behavior of noise-assisted detection
for increasing added noise, and the existence of an optimal
level of noise.

The results of this analysis are significant from the gen-
eral point of view of showing the importance of considering
the whole system including noise levels to optimize detec-
tion. The results are also significant from the particular
point of view of showing how environmental noise, either
natural or artificial, can assist detection of signals in dis-
tributed sensor networks.
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