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Abstract—We investigate mutual synchronization of the
coupled Morris-Lecar neurons with class I and class II ex-
citabilities. Many researchers have showed that class II
neurons easily achieve synchronization. However, we find
that the parameter region of synchronous firing for class I
neurons is larger than that for class II neurons.

1. Introduction

In recent neuroscience, many researchers have claimed
that synchronization of coupled neurons plays a very im-
portant role to code information in the brain. Neurons are
classified into two types, class I and class II, by the differ-
ence of the onsets of the firing. These two types are con-
firmed by the physiologic experiments and it is very impor-
tant to know how these differences affect synchronization.

For mutual synchronization of two neurons, it is clari-
fied by using the phase resetting curve (PRC) that class II
neurons easily achieve synchronization [1]-[3]. Also for a
large number of neurons with random connections, class II
neurons present a good level of synchronization regardless
of the connection topology [4]. Also for forced synchro-
nization, class II neurons have advantage of acquiring syn-
chronization [5]. However, Tsuji et al. showed that class I
neurons have wider parameter regions of synchronous fir-
ing than those for class II neurons by detailed bifurcation
analysis [6].

In this paper, we compare the parameter regions of in-
phase synchronization for the coupled Morris-Lecar(ML)
neurons by a chemical synapse, when the values of the
synaptic delay and the synaptic conductance are changed.
The ML neuron model can be switched between class I and
class II excitabilities by changing the value of one param-
eter [7]. Thus, in this paper, we use the ML model and
compare the bifurcation structure for class I and class II
by using the method [8] for analyzing the system with the
synaptic delay.

2. Coupled ML Equation

The ML neuron model [2, 3], proposed as a model for
describing a variety of oscillatory voltage patterns of Bar-

nacle muscle fibers, is described by

C
dV
dt

= gCaM∞(ECa − V) + gKN(EK − V)

+ gL(EL − V) + Iext (1)
dN
dt

=
N∞ − N
τN

(2)

whereV is the membrane potential,N ∈ [0,1] is the ac-
tivation variable forK+, Iext is the external current andt
denotes the time measured in milliseconds. The system
parametersECa,EK andEL represent equilibrium potential
for Ca2+, K+ and leak currents, respectively,gCa,gK andgL

denote the maximal conductances of corresponding ionic
currents. TheV-dependent functions,M∞,N∞ andτN are
given by

M∞ = 0.5[1+ tanh(V − Va)/Vb]

N∞ = 0.5[1+ tanh(V − Vc)/Vd] (3)

τN = 1.0/[ϕ cosh(V − Vc/2Vd)]

whereVa and Vc are the midpoint potential at which the
calcium current and the potassium current is halfactivated,
Vb is a constant corresponding to the steepness of volt-
age dependence of activation,Vd denotes the slope factor
of potassium activation andϕ is the temperature-like time
scale factor.

In this paper, we consider a system of chemically
mutual-coupled two ML neurons. The system equation is
described by

C
dVi

dt
= gCaM∞i(ECa − Vi) + gKN(EK − Vi)

+ gL(EL − Vi) + Iext+ gsynai+1(Vsyn− Vi) (4)
dNi

dt
=

N∞i − Ni

τN
(5)

dai

dt
=

bi

τ
(6)

dbi

dt
= −2

bi

τ
− ai

τ
(i = 1, 2, a3 ≡ a1). (7)

Note that the solutionai in Eqs.(6) and (7) with initial
condition (ai ,bi) = (0,1) at t = 0 represents theα-function
or ai(t) = (t/τ)e−t/τ, which is a model for describing the
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time-dependent conductance of the synapse. Each vector
(ai ,bi) jumps to the constant (0, 1) att = ti0 + τd where
ti0 is the time whenVi changes toVi > 0. Namely, the
firing information of the neuron transforms to connected
neurons with the time delayτd, which is mainly caused by
the length of synapses.

We set the reversal potentialVsynas -60 for the inhibitory
synapse, or 0 for the excitatory synapse. The aim of this
study is to compare parameter regions of in-phase synchro-
nization between class I and class II. The ML model can be
controlled between two classes by the value of the param-
eterVc. In this paper, we chooseVc = 12 andVc = 2 for
the class I and the class II neurons, respectively. The other
parameter values are fixed as shown in Tab.1.

Table 1: The values of parameter in Eq. (1)-(3).

ECa = 120[mV]
EK = −80[mV]
EL = −60[mV]
gCa = 4.0[mS/cm2]
gK = 8.0[mS/cm2]
gL = 2.0[mS/cm2]
Va = −1.2[mV]
Vb = 18.0[mV]
Vd = 17.4[mV]
ϕ = 1/15[sec−1]
C = 20.0[µF/cm2]
τ = 1[msec]

3. Results and Discussions

In this study, we fix the value of the external currentIext

as 73.67 and 78.55 [µA/cm2] for the class I and class II
neurons, respectively, to obtain similar firing frequency for
the single neuron. We show regions of synchronous firing
in the parameter plane (τd,gsyn) in Figs.1 and 2 obtained
by using Yoshinaga’s method [8]. In bifurcation diagrams,
black solid, red solid and black dashed curves indicate the
pitchfork, the period-doubling and the Neimark-Sacker bi-
furcation, respectively. In blue shaded regions, we observe
stable in-phase synchronous firings.

In Figs.1(a) and 2(a) (coupled by the inhibitory synapse),
we observe complicated bifurcation structure, however
these period-doubling, pitchfork and Neimark-Sacker bi-
furcations are subcritical; we cannot observe stable solu-
tions generated by these bifurcations. For the inhibitory
synapse, the appearance of bifurcations strongly depends
on both values of the synaptic delay and the synaptic con-
ductance. On the other hand, for the excitatory synapse, the
bifurcation structure is simple and mainly depends on only
the value of the synaptic delay.

It is known that class II neurons easily achieve synchro-
nization [1]-[3], however our results shown in Figs.1 and

2 are opposite to previous those studies. We claim that in
some parameter region the class I neurons have advantage
of acquiring synchronization.

At the points (τd, gsyn) = (5, 10) in each bifurcation dia-
gram shown in Figs.1(a), 2(a) and 2(b), we observe a non-
in-phase synchronous state shown in Figs.3, 5 and 6, re-
spectively. We observe a non-in-phase synchronous state
shown in Fig.4 at the point (τd,gsyn) = (5, 5) in the bifur-
cation diagram (Fig.1(b)). For the inhibitory (Figs.3 and
5) and the excitatory synapse (Figs.4 and 6) two neurons
are, respectively, synchronized at almost anti-phase and in-
phase. This property of the excitatory and the inhibitory
synapse is a common feature for mutual coupled neurons
by the delayed chemical synapse.

4. Conclusion

We investigated the bifurcation structure of the class I
and the class II neurons coupled by the inhibitory synapse
or the excitatory synapse. We compared it between two
classes, and found that the class I neurons have wider pa-
rameter regions of in-phase synchronization. In the future
works, we should clarify the reason why the class I neurons
synchronizes more easily than the class II neurons. In this
study, we set both the raise time and the decay time as the
same. however it is found that these time constants take
different values [9]. Thus studying a such system is one of
our further problems.
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Figure 1: Bifurcation diagrams for class I.
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Figure 2: Bifurcation diagrams for class II.

- 375 -



 

-50

0

 50

-50 0  50

[mV]

[mV]V1

V
2

(a) Phase portrait.

 

-50

0

 50

 0  50  100  150

[mV]

[msec]

V
1

t

V
2

V1 V2

(b) Waveform of potentials.

Figure 3: Stable periodic solution observed at (τd,gsyn) = (5, 10) in Fig.1(a).
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Figure 4: Stable periodic solution observed at (τd,gsyn) = (5, 5) in Fig.1(b).
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(b) Waveform of potentials.

Figure 5: Stable periodic solution observed at (τd,gsyn) = (5, 10) in Fig.2(a).
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Figure 6: Stable periodic solution observed at (τd,gsyn) = (5, 10) in Fig.2(b).
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