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Abstract—In this paper we present a method for auto-
matic detection of motor intention from in vivo neuronal
recordings in monkeys. The analysis relies on a data base
of spike trains collected in a series of experiments aiming to
study the hand-eye coordination mechanisms in primates.
The neural activity is recorded using a multi-electrode sys-
tem that can monitor up to fourteen neurons at time. In
this work we analyze the possibility to “read” the motor
intention from the set of simultaneously recorded spike
trains, by combining the information from all the avail-
able recordings. We show that the information of interest
can be successfully extracted from the data, under some
constraints. First, we show the analysis of spike trains,
segmented according to the behavioral epochs defined by
the experiments protocol, and give the discussion of the
proposed method performance in extracting the informa-
tion of interest, i.e. the presence/absence of motor inten-
tion. Also, we consider a less ’controlled’ analysis of entire
spike trains, without segmenting, where the relevant infor-
mation is more mixed with the side-effect processes, and
accordingly, more difficult to recognize.

1. Introduction

This works aims to examine the processes in the brain of
primates, related to motor activities, particularly hand con-
trol and hand-eyes coordination. We examine the question
weather the information we interpret as ’motor intention’
can be attributed to the spike trains recorded from the pari-
etal cortex of a monkey performing a series of behavioral
tasks. The positive answer presented in this paper shows
that the underlying assumptions are correct, or at least not
in contradiction with the experimental data. Among the
different uses one can imagine for this information, is the
control of motor prosthesis for patients with an impaired
motor control system, [3], [4]. Actually, many functions
typical of neural control of movement can be taken over by
automatic control methods whose input signals are sensory
stimuli, such as visual information about target location in
space. However, the intention to move does not rely only
on the input. It uses also, internally generated information
in the brain and, therefore, must be extracted in some way
from neural activity.

We present a machine learning based analysis of spike
train recordings, aiming to classify neural activity accord-
ing to presence/absence of intention for making a move-
ment. The conducted analysis relies upon the hypothesis
that we could ’read’ motor intention from the set of simul-
taneously recorded spike trains, by combining information
from all of the available recordings. Data analysis was kept
at the level of spike rates, and the obtained results prove it
to be a sufficient approximation for this particular classifi-
cation problem. The first problem of interest was to distin-
guish between behavioral tasks, depending on whether or
not neural activity in a selected set of task-epochs encodes
intention for movement. In the second problem, we have
explored the possibility of detecting the time of emergence
of motor intention from spike trains where no a priori as-
sumptions had been made concerning temporal epochs po-
tentially encoding the animal’s intention to move. The re-
sults obtained for the first problem show much better per-
formance, as a result of the introduction of a priori knowl-
edge about relevant epochs to be used in the analysis. The
second algorithm shows poorer performance, still the clas-
sification error is kept on 30% of wrongly classified data
points, on average.

2. Data Base

2.1. Experiments Description

The presented work relies on a data base of spike trains,
obtained in a series of extracellular neuronal recordings,
designed for studying mechanisms of hand-eyes coordina-
tion in primates. The recordings are done on the 7a area
of the parietal lobe, left hemisphere, for two rhesus mon-
keys. The detailed description of the experiments, and the
analysis conducted so far are given in [1], [2].

The monkey is placed in front of a touch-sensitive
screen, waiting for a target to appear in one of eight po-
sitions. At the same time, an instruction which task should
be performed is indicated.

- Reach task (R): The monkey is required to touch the
target appearing on the screen. Naturally, it will first look,
and than reach for it.
- Reach fixation task (RF): Similarly, when the target ap-
pears on the screen, the monkey should touch it, but keep-
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ing the eyes fixed to the center of the screen during the
whole experiment.
- Memory tasks: The goal of the memory tasks is to ex-
clude the influence of visual signals processing, by intro-
ducing the target memorization step. In the three tasks, the
monkey is required to memorize the target position without
moving. After the target disappears from the screen, the
movement toward the memorized position occurs. It is ei-
ther eye-only movement (Memory eye task (ME)), or hand-
only movement with the eyes fixed to the center (Memory
reach fixation task (MRF)), or both, hand and eyes move-
ment (Memory reach (MR)).
- No-go (NGO): In this task, no action should occur. The
neuronal activity is recorded in the absence of the action of
interest.
The 7-electrode system for recording neuronal activity is
used. It can monitor up to fourteen neurons simultaneously.

2.2. Data Base Organization

Figure 1 illustrates the organization of the data base. The
full described set of experiments is repeated for two lab
monkeys, for several electrode positions. The collection of
recordings from the same site will be called file . The two
data bases, obtained from two monkeys, contain 45 and 57
files, respectively. One file contains recordings obtained
from all six tasks, repeated for each of eight possible target
positions. In addition, for each task and target choice, the
experiment is repeated four times. Therefore, each file con-
tains at most 6x8x4 recordings. One recording results in a
set of up to fourteen spike trains. In addition, the eye and
the hand positions are also monitored, for control of the ex-
periments, but these data are not relevant for the presented
analysis.
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Figure 1: The schematic data base organization.

3. Methods

In the presented work, recorded data are analyzed on the
level of spike rates. Rates are obtained as a spike count
in a certain time interval, divided with the duration of that
interval. In the sections describing data analysis methods,
we give the detailed receipts for the rates calculations.

The choice of working with spike rates, rather than spike
times, is a question that requires a further discussion. The
usual arguments against rate codes holds here also [5]. In
order to represent data using spike rates, it is necessary to
adopt a certain time interval for rates calculation. There-
fore, such representation includes a delay, that is incon-
sistent with the execution of rapid actions, e.g. eye move-
ments [6]. While it is clear that the rate codes cannot mimic
all the functionality of real neuronal systems, we will show
that, even such coarse representation of the neuronal activ-
ity, provides enough information for the successful extrac-
tion of motor intention.

The problem of interest is to distinguish between spike
train recordings which encode the intention for making
a movement, from those corresponding to no movement
planned. We consider the term ’movement’ in the most
general sense - any movement anticipated in the experi-
ment, involving eyes or hand. The underlying hypothesis
is that the presence of intention for moving corresponds to
the modulation of the firing rate in the recorded neurons.
This is a plausible assumption for the particular recorded
set of neurons. The monitored brain region is believed
to be responsible for hand-eyes coordination in primates.
Therefore, it is realistic to expect that its neurons become
more active, in order to exchange more information, dur-
ing a movement planning and execution. We refer to these
phenomena as ’motor intention’ in this work.

We present the two methods for data classification with
respect to the proposed criteria. The adopted machine
learning algorithm is the same in both cases, but the data
preprocessing step differs. The applied classifier is the
standard multi layer perceptron network, with the gradi-
ent descent backpropagation training. One such classifier
is created for each of the files in the data base. The number
of network inputs corresponds to the number of neurons
recorded simultaneously, which varies from file to file, but
cannot be greater than fourteen. The system has a binary
output, giving the answer weather the input data contains
motor intention or not. The number of perceptrons in the
hidden layer is determined by cross-validation.

3.1. Classification Based on Selected Data Segments.

The first classification problem of interest is: sorting the
experimental tasks with respect to presence of motor inten-
tion (and as a consequence, presence of a movement) in
at least one epoch anticipated by the tasks protocol. Since
we do not consider the differences between eyes and hand
movements, five tasks (R, RF, and three memory tasks) are
labeled as Motor intention present , while NGO task corre-
sponds to No motor intention class. In order to deal with
the resulting unbalanced problem, data examples from the
smaller class are repeated after the selection of learning,
validation and test set.

The algorithm is presented on Figure 2. A spike rate is
calculated for each spike train, using just a relevant part
of the recording. We consider only the intervals where the
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Figure 2: First algorithm. 14 spike trains are converted into
a vector of spike rates. The a priori selected, relevant, data
segment is used.

actual movement occurs for R,RF, and memory tasks, and
the corresponding interval for NGO. This way, each set of
simultaneously recorded data is converted into a vector of
spike rates, with the dimension up to 14. This procedure re-
sults in the set of 192 data examples which is, then, divided
into learning, validation and test set, in order to construct
the classifier.

3.2. Classification on Entire Recordings

The second algorithm, presented on Figure 3, aims at
detecting the appearance of motor intention in time. The
complete recordings were considered rather than just a set
of selected epochs. The number of data examples, as well
as the temporal resolution, are defined by an adopted time
window. The window is moving along the spike trains in
discrete time steps, with the predefined time shift. For each
distinct window position, spike rates are calculated in the
standard way, as the number of spikes within the window
divided by the window size. The considered window size is
1000msec, and the time shift is set at 200msec. The average
length of the recordings is, approximately, 10 sec; therefore
we consider around 10% of the available data in each step,
with 4/5 overlapping between two succeeding steps. The
resulting data are spike rates, again, but now, one set of
spike trains gives several rate vectors. All data obtained
this way are used for constructing the learning, validation
and test set.

For the data labeling, we make the hypothesis about
presence/absence of motor intention in certain phases of
the experiment. Spike rate vectors are labeled in accor-
dance with the corresponding spike trains segments. In
some cases, the window position do not allow clear label-
ing (i.e. it can overlap some motor intention and some no
motor intention segments). Such data are excluded from
the training phase. In the test phase, we use the reliably
labeled data for evaluating the classifier performance on
average, but also the complete data set (including the non-
labeled data) to obtain an additional information about the
phenomenon of interest.
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Figure 3: Second algorithm. The complete recording con-
sidered - spike rates for the three window positions pre-
sented.

4. Results

Figure 4 shows the average performance of the described
algorithms for the two data bases. The upper two figures
give results for the first method, and the lower two for the
second one. The two data bases are represented column-
wise. Each bar on the figure gives the average classification
error for one file, in percents of the total number of data
examples. The presented errors are calculated for the test
set. For each file, on the x-axis is noted the number of
recorded neurons for that file.
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Figure 4: Average classification error. First method - upper
figures, second - lower ones. Each bar is the error for one
file. x axis - number of recorded neurons in the file; y axis
- the classification error (in %).

Comparison of the obtained results show better perfor-
mance of the first algorithm. Majority of the files give
the classification error below 30%, and often it is less than
20%, particularly for the second data base (figures on the
right). For the second algorithm, we obtain an increase of
the error, since it is rarely below 20%, but remains less than
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30% for most of the files. This is the expected results, since
the second method attempts to solve more complex classi-
fication problem. In the first method, the part of the classi-
fication is done ’in advance’, in the preprocessing phase, by
choosing the right data segments for spike rates calculation.
The obtained classification error, shows that it is possible
to extract motor intention from the presented data, using
a conventional machine learning algorithm. For the sec-
ond considered problem, the applied data analysis allows
influence of many side-effect processes, that mask the in-
formation to be extracted. Still, the presented figures show
that the classification can be done with a certain precision.

Figure 5 shows some examples of ’on-line’ classification
using the second algorithm. Here, the performance on the
selected set of examples is examined. Each considered set
of spike trains is segmented and converted into spike rate
vectors in the usual way. The classifier output is the prob-
ability of finding motor intention in the spike rates vector
given as the input, i.e. in the corresponding data segment.
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Figure 5: ’On-line’classification using the second method.
Some examples. x axis - recording time, y axis - probability
of finding motor intention in the data.

The shaded area on the figures corresponds to the epochs
where the motor intention is expected. The curve gives
the classifier outputs. For some of the examples, the max-
imal probability of motor intention falls around the shaded
area (subfigures 1,3,4,5,6,7), but we can find some exam-
ples where it does not hold (2,8,10). As expected, NGO
data show much smaller classification probability. Also,
very often the motor intention appears before (or even af-
ter) the shaded interval. This should not be considered as
error, since those examples correspond to data that cannot

be reliably labeled a priori, due to the corresponding data
segments position. Also, it can happen that the motor in-
tention appears before the expected time, while monkey is
still waiting for the instructions.

The influence of the window size, as well as the a priori
choice of motor intention segments will be examined in the
future work.

5. Conclusion

This paper presents two methods for automatic detection
of motor intention from multi-electrode and multi-tasks
recordings of neuronal activity in monkeys. The first ap-
proach analyzes the a priori chosen time intervals of the
recordings, believed to contain the motor intention. The
obtained results show that motor intention can be recog-
nized using the standard machine learning methods. The
second method, aims to detect the recording intervals when
motor intention is present. In this case, the relevant data is
masked by other processes present during the movement,
and consequently, the classification problem becomes more
complex. The resulting performance is deteriorated, but the
classification is still possible, according to the obtained re-
sults.
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