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Abstract—In this paper, we propose a method of dewhereAT denotes the transposed matrixAfAlso, a vec-
creasing a computational cost that is needed to controltar of the end-point position of the manipulator is defined
redundant manipulator in three-dimensional space. Espas
cially, in case of an unknown nonlinear system of the ma- r=[ry, ro, ..., rm]" € R™ 2)
_nipulator, the pomputationa_l cost bgcomes high for deri“rhen, the geometrical relation 6f andr is given by
ing an approximated Jacobian matrix. We use controllable
dumping co€icient to decrease computational cost. Also, r =g9(0), 3)

we propose the method of deriving the approximated Jaco-h . i function that d d the f
bian matrix for unknown nonlinear system. whereg Is a noniinear function that depends on the form

of the manipulator. Generally, when the joint angle vector
0 is given, the end-point position which varies with®,

1. Introduction is uniquely decided. The computational cost is low. On
the other hand, if only is given, deriving® is an inverse

Recently, the development of a robot that can adjust teroblem described by

changes in the environment as a next-generation robot has _ o1

: . : 0 =g(n). (4)
received research attention. The manipulator of the robot
should be redundant since flexibility and speed are espk-is difficult to solve (4). The control system is shown in
cially demanded in such a robot in adjusting to a changeig. 1, whera 4 is the target point.
in the environment. It is necessary to provide redundancy When a rotational joint type manipulator is controlled, a
for the manipulator. A redundant manipulator is excellentonlinear function of the control system contains trigono-
in operationality and generality compared with the manipmetric funcitons [4]. The manipulator can be controlled by
ulator without redundancy since the redundant manipulaolving the inverse problem.
tor can evade a singular point and an obstacle using re-
dundancy [1]. When a joint angle is calculated from the | g’ )
end-point position of the manipulator that has a redundant | Inverse Kinematics Forward Kinematics
degree of freedom, we must solve an inverse problem of
kinematics. The inverse problem involves deriving an in-
put from an output. A generalized inverse matrix is used
to solve it [2]. However, the cost for deriving the general-
ized inverse matrix is high. Therefore, we cannot use it in
real-tlme control. . 2. Solving the Inverse Problem

In this research, we propose a method of decreasing a

computational cost that is needed to control a redundapfl. Newton Method
manipulator in three-dimensional space. Additionally, we

proposed the method of deriving the approximated Jaco- We use the l\_lgvvton method to g,olve th? inverse probl(_am.
bian matrix for unknown nonlinear system. [3]. The target position of the end-point position of the manip-

g Ta

Figure 1: Control system

ulator is defined asq = [r1d, r2d, ... » fma]’ € R™. A
nonlinear function is defined as
1.1. Inverse Kinematics Problem
f(®) =rq-9(@®) =0. )

We consider the control of the end-point position of a ) ) )
manipulator that has degrees of freedom. Lét be a joint The Newton method is used for solving the nonlinear func-

angle, then the relation @f and a vecto® is defined as 10N given by (5). Then, (5) is transformed into

k+1y _ k of k+1 Ky _
O =[6, Os, ..., 6] € R, Q) f(O@) =f(O°) + 70 @g(gk -0 =0. (6)
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Using a Jacobian matrik, (6) is rewritten as —
f(ek) + ‘](@k)(@k+l - ®k) =0, (7) ® Unknown —— T
of n —
J= [%] € R™", (8)

We obtain the following iterative equation by solving for Figure 2: Blockdiagram of unknown nonlinear system
OLin (7).

0! = @ - hJ(@"f(eY), 9)

The dimension 08J" is mx min (12). The computational
whereh is a dumping coféicient that determines the up- cost becomes lower. Then, using the generalized inverse
date frequency o®. O is updated until (9) is satisfied with matrix, (9) is rewritten as
rq = g(O%Y). Then, the end-point position of the manip-
ulator reaches the target position. This method can obtain 0! = - hJ*(0)f(0Y). (13)
the solution by repeating a simple numerical computation . . ) )
if the number of dimensions of the joint space is equal t5€92ardless of/O dimension, the solution of the inverse
that of the workspace. However, the number of dimensiof©Plem can be derived using (13).
of the joint space is larger than that of the workspace in a
conventional manipulator. Thereforenf< nis satisfied, 3. Proposed Method
the Jacobian matrix becomes a rectangular matrix. To solve )
the inverse problem with a rectangular Jacobian matrix, &1- Solution of the Inverse Problem for Unknown Sys-

generalized inverse matrix should be used. tem

In case of an unknown nonlinear system, a Jacobian ma-

2.2. Generalized Inverse Matrix trix is need to approximate since a system function can-

A Jacobian matrix is defined as not be used. We propose a method of approximating the
Jacobian matrix to solve an inverse problem for unknown
ofy ofy ofy . . X
% o = o system as shown in Fig. 2. In this system, onlgan be
2oL o2 observed as an output. The Jacobian matrix is derived by
J=| 7 B (10)  giving a minute displacement to only one of the control
ot ot a;m signals and observing the output. Thth column of the
%0, oo, 9, Jacobian matrix is shown by
wheren is the input dimension anah is the output dimen- 3 _ [a_fl ot ot ]T (14)
sion. In the case of the same dimensiong®f{m = n), the th-col = | 36 aa a | -

Jacobian matrix becomes a square matrix. When the matiiminute displacement input and a displacement output are
is regular, its inverse matrix exists. However, the Jacobiagiyen by

matrix of a conventional manipulator is not squarg(m).

Hence, its inverse matrix does not exist in a conventional AQ = [o o AG O .- 0], (15)
manipulator. It is impossible to solve such a nonlinear
equation as (5) using (9). In this case, a generalized inverse Ari = [Aril Ariz Arim]' (16)

matrix is used for solving the problem. Here, we consider _ _
an arbitrary matriA. Its generalized inverse matrix* is ~ Then,Jin-col is approximated as follows
satisfied by following equation;

: ) - qT
. _ Ar! Ar! Arly
AA*A = A, JIth—CO| = [—A—QT —A—gf _A_H.] . (17)
ATAAT = AT, The Jacobian matrix is obtained by carrying this operation
(AAT)T = AAT, on all @s.
(ATA)T = A*A. (11) Art Ar A
@ @ v m
The most common type of the generalized inverse matrix _i_;i S -
is the least-square type = (J7J)"1J7. However, it in- J= ) o o (18)
creases computational cost becausd’af ¢ R™". The ;1 ;i ;n
dimension increases. Therefore, we use the following type —AL@T e —ALBT e —A;”n’

to decrease the dimension. _ o .
However, even if the solution is obtained by these equa-

Jr=J37J")1 (12) tions, the computational cost is high.
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3.2. Dumping Codficient

"manipulator.dat” ——
"orbit.dat" --------

The calculation cost is decreased using the dumping co-
efficient. We use a dumping cfiieient h to decrease the
calculation cost. It decides the update frequenc@ ofiVe
propose a method to make the dumpingfioenth con-
trollable. In this research, we compare constantth con-
trollable h. Constanh updates® each time. The control-
lable h does not need to upda@ each time. Using con-
trollableh, the process of the operation is as follows.

BoRrNwWAOG

STEP1:

The Jacobian matrix at the starting point is calculated. The
hmin Which is the minimum controllablé is selected as
small as possible.

STEP2:

The controllablen is gradually enlarged while keeping the
value of the Jacobian matrix constant so that the end-point

position of the manipulator moves to the target straight. manipulator dat” ——
STEP3: orbitatt
If an orbit of the manipulator leaves the target orbit, the Ja-

cobian matrix is renewed. In this case, the controlldlike
returned to former value.

STEP4:

STEP2 and STEP3 is repeated until the end-point position
of the manipulator reaches the target position. We define
an evaluation function and repeat these operations until the
evaluation value is smaller than a decided constant value
by changing the controllable

Figure 4: Orbit of manipulator (unknown system, control-
lableh)

4. Simulation Result Figure 5: Orbit of manipulator (known system, constant
A . . . . .
z The nonlinear functions of this manipulator are given by
X L, cosf; cosh, + L, cos@y + 63) cos@, + 64)
777777777777777 r=|vy |=| Licosdsind,+ L,cosf, +63)sin@: +6s) |,
z Ly sing; + Ly sin@, + 6,)

R ) (19)
Lo o whereL | is the length ofj-th arm.

Length of arm;

L;=30,L,=30

Initial joint angle:

Op = [01,62,63,64]" = [30°,45°, 30, 15°]7

Initial end-point position of the maipulator:

r=[xy,2" =[259, 3.14, 410"

L Target end-point position of the manipulator:
g ‘é\;\\ re = [XdYa. 2] = [2.00, 2.00, 2.00T"
**************************** =~ Dumping codicient:

Constant = 0.005
hmin = 0.001

\

Figure 3: Manipulator of two joints

The end-point position of the arm reaches the target point
We simulate a manipulator of two joints shown in Fig. 3in all the figures(Fig. 4-Fig. 7). Table. 3 shows conditions
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Figure 6: Orbit of manipulator (unknown system, constal
h)

ForNwAO

ForN®WAO

" manipulator.dat”
"orbit.dat" --------

" manipulator .dat"
"orbit.dat" --------

of simulations. Whether the nonliear function is known or
unknown, the orbits became about the same by using the
approximated Jacobian matrix derived from (14)-(18). The
result shows our proposed method is useful. The compar-
ison of the update frequency is shown in Table. 1 and 2.
In Table. 1, the update frequency of the Jacobian matrix is
renewed each time. However, in Table. 2, the update fre-
quency of the Jacobian matrix ig2ltimes as many as that

of joint angle® since controllablér does not need to up-
date each time. Using controllalifethe update frequency

of the Jacobian matrix is decreased. All the update frequen-
cies of Table. 2 are much smaller than those of Table. 1.
The computational cost become lower. The result shows
nozontrollable dumping cdgcienth is efective.

5. Conclution

In this paper, we proposed a method of decreasing a
computational cost that was needed to control a redundant
manipulator in three-dimensional space. Comparing a con-
trollable h with a constanh, the update frequency of joint
angle® became half and that of Jacobian matrix became
quarter. Although the computational cost became lower,
orbits of the manipulator was about the same. This result
shows our proposed method i$estive.

Additionally, we proposed the method of deriving the
approximated Jacobian matrix for unknown nonlinear sys-
tem. Whether the nonliear system was known or unknown,
the orbits became about the same by using the the approx-
imated Jacobian matrix. This result shows our proposed

Figure 7: Orbit of manipulator (known system, controllablenethod that approximates Jacobian matrix is useful.

h)

Table 1:

h)[iterations]
System Joint angle® | Jacobian matrix
Known system 823 823
Unknown system 815 815

Table 2: Comparison of update frequency (controllable

h

[iterations]

System Joint angle® | Jacobian matrix
Known system 479 227
Unknown system 482 233

Table 3: Figures

Fig. # | System | Dumping codficienth
4 Known Constant
5 Unknown Constant
6 Known controllable
7 Unknown controllable
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