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Abstract—In this paper, we propose a method of de-
creasing a computational cost that is needed to control a
redundant manipulator in three-dimensional space. Espe-
cially, in case of an unknown nonlinear system of the ma-
nipulator, the computational cost becomes high for deriv-
ing an approximated Jacobian matrix. We use controllable
dumping coefficient to decrease computational cost. Also,
we propose the method of deriving the approximated Jaco-
bian matrix for unknown nonlinear system.

1. Introduction

Recently, the development of a robot that can adjust to
changes in the environment as a next-generation robot has
received research attention. The manipulator of the robot
should be redundant since flexibility and speed are espe-
cially demanded in such a robot in adjusting to a change
in the environment. It is necessary to provide redundancy
for the manipulator. A redundant manipulator is excellent
in operationality and generality compared with the manip-
ulator without redundancy since the redundant manipula-
tor can evade a singular point and an obstacle using re-
dundancy [1]. When a joint angle is calculated from the
end-point position of the manipulator that has a redundant
degree of freedom, we must solve an inverse problem of
kinematics. The inverse problem involves deriving an in-
put from an output. A generalized inverse matrix is used
to solve it [2]. However, the cost for deriving the general-
ized inverse matrix is high. Therefore, we cannot use it in
real-time control.

In this research, we propose a method of decreasing a
computational cost that is needed to control a redundant
manipulator in three-dimensional space. Additionally, we
proposed the method of deriving the approximated Jaco-
bian matrix for unknown nonlinear system. [3].

1.1. Inverse Kinematics Problem

We consider the control of the end-point position of a
manipulator that hasn degrees of freedom. Letθi be a joint
angle, then the relation ofθi and a vectorΘ is defined as

Θ = [θ1, θ2, ... , θn]T ∈ Rn, (1)

whereAT denotes the transposed matrix ofA. Also, a vec-
tor of the end-point position of the manipulator is defined
as

r = [r1, r2, ... , rm]T ∈ Rm. (2)

Then, the geometrical relation ofΘ andr is given by

r = g(Θ), (3)

whereg is a nonlinear function that depends on the form
of the manipulator. Generally, when the joint angle vector
Θ is given, the end-point positionr , which varies withΘ,
is uniquely decided. The computational cost is low. On
the other hand, if onlyr is given, derivingΘ is an inverse
problem described by

Θ = g−1(r ). (4)

It is difficult to solve (4). The control system is shown in
Fig. 1, whererd is the target point.

When a rotational joint type manipulator is controlled, a
nonlinear function of the control system contains trigono-
metric funcitons [4]. The manipulator can be controlled by
solving the inverse problem.

Inverse Kinematics Forward Kinematics

g gr Θ
−1

d rd

Figure 1: Control system

2. Solving the Inverse Problem

2.1. Newton Method

We use the Newton method to solve the inverse problem.
The target position of the end-point position of the manip-
ulator is defined asrd = [r1,d, r2,d, ... , rm,d]T ∈ Rm. A
nonlinear function is defined as

f (Θ) = rd − g(Θ) = 0. (5)

The Newton method is used for solving the nonlinear func-
tion given by (5). Then, (5) is transformed into

f (Θk+1) = f (Θk) +
∂f
∂Θ

∣∣∣∣∣
Θ=Θk

(Θk+1 −Θk) = 0. (6)
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Using a Jacobian matrixJ, (6) is rewritten as

f (Θk) + J(Θk)(Θk+1 −Θk) = 0, (7)

J = [
∂f
∂Θ

] ∈ Rm×n. (8)

We obtain the following iterative equation by solving for
Θk+1 in (7).

Θk+1 = Θk − hJ−1(Θk)f (Θk), (9)

whereh is a dumping coefficient that determines the up-
date frequency ofΘ. Θ is updated until (9) is satisfied with
rd = g(Θk+1). Then, the end-point position of the manip-
ulator reaches the target position. This method can obtain
the solution by repeating a simple numerical computation
if the number of dimensions of the joint space is equal to
that of the workspace. However, the number of dimensions
of the joint space is larger than that of the workspace in a
conventional manipulator. Therefore, ifm< n is satisfied,
the Jacobian matrix becomes a rectangular matrix. To solve
the inverse problem with a rectangular Jacobian matrix, a
generalized inverse matrix should be used.

2.2. Generalized Inverse Matrix

A Jacobian matrix is defined as

J =



∂ f1
∂θ1

∂ f1
∂θ2

· · · ∂ f1
∂θn

∂ f2
∂θ1

∂ f2
∂θ2

· · · ∂ f2
∂θn

...
...

...
∂ fm
∂θ1

∂ fm
∂θ2

· · · ∂ fm
∂θn


, (10)

wheren is the input dimension andm is the output dimen-
sion. In the case of the same dimensions of I/O(m = n), the
Jacobian matrix becomes a square matrix. When the matrix
is regular, its inverse matrix exists. However, the Jacobian
matrix of a conventional manipulator is not square(n > m).
Hence, its inverse matrix does not exist in a conventional
manipulator. It is impossible to solve such a nonlinear
equation as (5) using (9). In this case, a generalized inverse
matrix is used for solving the problem. Here, we consider
an arbitrary matrixA. Its generalized inverse matrixA+ is
satisfied by following equation;

AA+A = A,

A+AA+ = A+,

(AA+)T = AA+,

(A+A)T = A+A. (11)

The most common type of the generalized inverse matrix
is the least-square typeJ+ = (JTJ)−1JT . However, it in-
creases computational cost because ofJTJ ∈ Rn×n. The
dimension increases. Therefore, we use the following type
to decrease the dimension.

J+ = JT(JJT)−1 (12)

Unknown rΘ

Figure 2: Blockdiagram of unknown nonlinear system

The dimension ofJJT is m×m in (12). The computational
cost becomes lower. Then, using the generalized inverse
matrix, (9) is rewritten as

Θk+1 = Θk − hJ+(Θk)f (Θk). (13)

Regardless of I/O dimension, the solution of the inverse
problem can be derived using (13).

3. Proposed Method

3.1. Solution of the Inverse Problem for Unknown Sys-
tem

In case of an unknown nonlinear system, a Jacobian ma-
trix is need to approximate since a system function can-
not be used. We propose a method of approximating the
Jacobian matrix to solve an inverse problem for unknown
system as shown in Fig. 2. In this system, onlyr can be
observed as an output. The Jacobian matrix is derived by
giving a minute displacement to only one of the control
signals and observing the output. Thei-th column of the
Jacobian matrix is shown by

Jith−col =
[
∂ f1
∂θi

∂ f2
∂θi

· · · ∂ fm
∂θi

]T
. (14)

A minute displacement input and a displacement output are
given by

∆Θi =
[
0 · · · ∆θi 0 · · · 0

]
, (15)

∆r i =
[
∆r i

1 ∆r i
2 · · · ∆r i

m

]
. (16)

Then,Jith−col is approximated as follows

Jith−col =

[
−∆r i

1
∆θi

−∆r i
2

∆θi
. . . −∆r i

m

∆θi

]T
. (17)

The Jacobian matrix is obtained by carrying this operation
on allΘs.

J =



−∆r1
1

∆θ1
· · · −∆r i

1
∆θi

· · · −∆rn
1

∆θn

−∆r1
2

∆θ1
· · · −∆r i

2
∆θi

· · · −∆rn
2

∆θn

...
...

...

−∆r1
m

∆θ1
· · · −∆r i

m

∆θi
· · · −∆rn

m

∆θn


(18)

However, even if the solution is obtained by these equa-
tions, the computational cost is high.
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3.2. Dumping Coefficient

The calculation cost is decreased using the dumping co-
efficient. We use a dumping coefficient h to decrease the
calculation cost. It decides the update frequency ofΘ. We
propose a method to make the dumping coefficienth con-
trollable. In this research, we compare constanth with con-
trollableh. Constanth updatesΘ each time. The control-
lable h does not need to updateΘ each time. Using con-
trollableh, the process of the operation is as follows.

STEP1:
The Jacobian matrix at the starting point is calculated. The
hmin which is the minimum controllableh is selected as
small as possible.
STEP2:
The controllableh is gradually enlarged while keeping the
value of the Jacobian matrix constant so that the end-point
position of the manipulator moves to the target straight.
STEP3:
If an orbit of the manipulator leaves the target orbit, the Ja-
cobian matrix is renewed. In this case, the controllableh is
returned to former value.
STEP4:
STEP2 and STEP3 is repeated until the end-point position
of the manipulator reaches the target position. We define
an evaluation function and repeat these operations until the
evaluation value is smaller than a decided constant value
by changing the controllableh.

4. Simulation Result

x

y

z
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Figure 3: Manipulator of two joints

We simulate a manipulator of two joints shown in Fig. 3.
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Figure 4: Orbit of manipulator (unknown system, control-
lableh)
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Figure 5: Orbit of manipulator (known system, constanth)

The nonlinear functions of this manipulator are given by

r =


x
y
z

 =


L1 cosθ1 cosθ2 + L2 cos(θ1 + θ3) cos(θ2 + θ4)
L1 cosθ1 sinθ2 + L2 cos(θ1 + θ3) sin(θ2 + θ4)

L1 sinθ1 + L2 sin(θ1 + θ2)

 ,

(19)
whereL j is the length ofj-th arm.
Length of arm:
L1 = 3.0 , L2 = 3.0
Initial joint angle:
Θ0 = [θ1, θ2, θ3, θ4]T = [30◦,45◦,30◦,15◦]T

Initial end-point position of the maipulator:
r = [x, y, z]T = [2.59 , 3.14 , 4.10 ]T

Target end-point position of the manipulator:
rd = [xd, yd, zd]T = [2.00 , 2.00 , 2.00 ]T

Dumping coefficient:
Constanth = 0.005
hmin = 0.001

The end-point position of the arm reaches the target point
in all the figures(Fig. 4-Fig. 7). Table. 3 shows conditions
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Figure 6: Orbit of manipulator (unknown system, constant
h)
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Figure 7: Orbit of manipulator (known system, controllable
h)

Table 1: Comparison of update frequency (constant
h)[iterations]

System Joint angleΘ Jacobian matrix
Known system 823 823
Unknown system 815 815

Table 2: Comparison of update frequency (controllable
h)[iterations]

System Joint angleΘ Jacobian matrix
Known system 479 227
Unknown system 482 233

Table 3: Figures
Fig. # System Dumping coefficienth

4 Known Constant
5 Unknown Constant
6 Known controllable
7 Unknown controllable

of simulations. Whether the nonliear function is known or
unknown, the orbits became about the same by using the
approximated Jacobian matrix derived from (14)-(18). The
result shows our proposed method is useful. The compar-
ison of the update frequency is shown in Table. 1 and 2.
In Table. 1, the update frequency of the Jacobian matrix is
renewed each time. However, in Table. 2, the update fre-
quency of the Jacobian matrix is 1/2 times as many as that
of joint angleΘ since controllableh does not need to up-
date each time. Using controllableh, the update frequency
of the Jacobian matrix is decreased. All the update frequen-
cies of Table. 2 are much smaller than those of Table. 1.
The computational cost become lower. The result shows
controllable dumping coefficienth is effective.

5. Conclution

In this paper, we proposed a method of decreasing a
computational cost that was needed to control a redundant
manipulator in three-dimensional space. Comparing a con-
trollableh with a constanth, the update frequency of joint
angleΘ became half and that of Jacobian matrix became
quarter. Although the computational cost became lower,
orbits of the manipulator was about the same. This result
shows our proposed method is effective.

Additionally, we proposed the method of deriving the
approximated Jacobian matrix for unknown nonlinear sys-
tem. Whether the nonliear system was known or unknown,
the orbits became about the same by using the the approx-
imated Jacobian matrix. This result shows our proposed
method that approximates Jacobian matrix is useful.
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