
A Primal-Dual Beneath-Beyond Method

Yuzo Ohta∗ and Masashi Tsumura∗

∗ School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
Email: ohta@cs.kobe-u.ac.jp

Abstract—The purpose of this paper is to propose an
improved primal-dual beneath–beyond method to solve dy-
namic convex hull problem in d-dimensional space effi-
ciently. The traditional beneath–beyond method requires
the whole data of its faces and their inclusion relations.
However, in the application of the dynamic convex hull
problem, we usually do not need data of all faces. When
the dimension d becomes large, then the computing time
to maintain these unnecessary data becomes very large. In
this respect, we propose a method which need data of facets
and subfacets, edges, and nodes. This is useful in saving
not only the storage but also the computing time.

1. Introduction

The convex hull problem is one of the most fundamen-
tal problems in the computational geometry [1]. In par-
ticular, in stability analysis of dynamical systems using
computer [2]–[8], and in the construction of the Maximal
Admissible Sets (MASs) for constrained systems [9]–[14],
the dynamic convex hull algorithm plays a crucial role.
The beneath–beyond (BB) method [1] is one of the most
powerful method to solve dynamic convex hull problem
in d-dimensional spaces. It maintains data of all k-faces,
0 ≤ k ≤ d−1, where d is the dimension of the space we are
concern. To construct Polytopic Lyapunov Functions [2]–
[5], we only need data of facets ((d − 1)-faces) and nodes
(0-faces), and, hence, the original BB method is not effi-
cient for this application, and an improved BB method was
proposed in [6], which maintains only data of facets, sub-
facets ((d − 2)-faces), and nodes.

On the other hand, in the construction of Piecewise Lin-
ear Lyapunov Functions (PLLFs) [7], [8], we also need data
of edges (1-faces). In [13], we proposed to adopt concept
of the dual polytope in the construction of MASs. There
is one to one corresponding between a k-face of a given
primal d-polytope P and a (d − 1 − k)-face of its dual poly-
tope PD, and, hence, facets, subfacets, edges and nodes of
P and nodes, edges, subfacets, and facets corresponds, re-
spectively. The original BB method has data of all k-faces,
and, hence, it can represent both the primal polytope and
the dual polytope in a single polytope data structure. On
the other hand, the modified BB method can not do this,
since it has not data of edges.

In this paper, we modify the BB method in [6] so that
it also maintains data of edges too. By this, this new BB

method not only recovers symmetry in data structure, but
also keep the superiority in efficiency.
Notation: In this paper, R denotes the real number system,
and Rd is the usual vector space of real d–dimensional vec-
tors x = [x1, x2, ..., xd]�. All vectors are to be regarded as
column vectors for the purpose of matrix multiplications.
The inner product of two vectors x and y in Rd is expressed
by (x|y) =

∑d
i=1 xiyi. For a set P in Rd, the interior, the affine

hull and the convex hull of P are denoted by int P, aff P
and co P, respectively. For a set V having a finite number
of elements |V | denotes the cardinality of V .

2. Faces, Dual polytopes and Coloring

A polytope P ⊆ Rd is usually give by

P = co (x1, x2, · · · , xn), (1)

where xk ∈ Rd for all k.
When P has an interior point, dim aff P = d, and P is

said a d-polytope. In the following, for simplicity, we as-
sume that 0 is an interior point of P. Then, P is represented
also by

P = {x : (hi|x) ≤ 1, i = 1, 2, · · · ,m}, (2)

where hi ∈ Rd for all i.
Let us consider a hyper planeH1(η) = {x : (η|x) = 1} in

Rd which does not intersect 0, and define open half spaces
S −(η) and S +(η) by S −(η) = {x ∈ Rd : (η|x) < 1}, and
S +(η) = {x ∈ Rd : (η|x) > 1}. A hyper plane H1(η) is
a supporting hyper plane of the polytope P if and only if
conditions int P ⊆ S −(η) and F = P

⋂H1(η) � ∅ hold,
and F is a k-face of P, where k = dim aff F. Note that any
k-face is a polytope in Rk. Let us denote the set of all faces
of P and the set of all k-faces of P by F (P) and Fk(P),
respectively. In particular, we denote F0(P) by node P. A
(d − 1)-face F ∈ Fd−1(P), a (d − 2)-face G ∈ Fd−2(P), a 1-
face l ∈ F1(P), and a 0-face x ∈ node P are called a facet,
a subfacet, an edge, a node, respectively.

The vector hi in (2) is called the normalized normal vec-
tor of a facet Fi, since it satisfies

(hi|x) = 1 ∀ x ∈ Fi. (3)

The dual polytope PD of the polytope P can be defined us-
ing normalized normal vectors of P as follows.

PD = co (h1, h2, · · · , hm), m = |Fd−1(P)|. (4)

2007 International Symposium on Nonlinear Theory and its
Applications
NOLTA'07, Vancouver, Canada, September 16-19, 2007

- 353 -

Definition 1 Coloring of faces. Let p ∈ Rd, Fi ∈ Fd−1(P),
and let hi be the normalized normal vector of Fi. The facet
Fi is colored as follows:
1) Fi is yellow if p ∈ aff Fi, i.e., (hi|p) = 1,
2) Fi is blue if p ∈ S −(Fi), i.e., (hi|p) < 1, and
3) Fi is red if p ∈ S +(Fi), i.e., (hi|p) > 1.

Traditionally, it is said that p is beneath (beyond, on, re-
spectively) the facet Fi if Fi is blue (red, yellow, respec-
tively), but we use color since it is convenient to define
colors k-faces (k < d − 1).

yellowblue

red

orange

green

purple brown

Fig. 1 The three primary colors and mixture of them.

We code colors by using 3-bit data: We correspond yel-
low, blue and red to 001, 010 and 100, respectively. We
define the logical OR operation ∨ to these 3-bit data as fol-
lows: (b1 b2 b3) = (b1

1 b1
2 b1

3) ∨ (b2
1 b2

2 b2
3) is defined by bj

= b1
j ∨ b2

j , j = 1, 2, 3. Moreover, we define (b1 b2 b3) =∨m
k=1 (bk

1 bk
2 bk

3) by bj =
∨m

k=1 bk
j, j = 1, 2, 3, and

m∨

k=1

bk
j = (· · · ((b1

j ∨ b2
j) ∨ b3

j) · · ·) ∨ bm
j)

Definition 2 Coloring of k-faces.
Let G j ∈ Fk(P), k < dim P− 1, and let {Fij }mi

j=1 be the set of
all facets including G j. Suppose that Fi j has been classi-

fied as (b
i j

1 , b
i j

2 , b
i j

3). Set (b1 b2 b3) =
∨m

j=1(b
i j

1 b
i j

2 b
i j

3). Then,
G j is colored as follows:
1) G j is yellow if (b1 b2 b3) = (001),
2) G j is blue if (b1 b2 b3) = (010),
3) G j is red if (b1 b2 b3) = (100),
4) G j is orange if (b1 b2 b3) = (101),
5) G j is green if (b1 b2 b3) = (011),
6) G j is purple if (b1 b2 b3) = (110), and
7) G j is brown if (b1 b2 b3) = (111).
We denote the set of all yellow, blue, red, orange, green,
purple, brown k-faces of P by F Y

k (P), F Bl
k (P), F R

k (P),
F O

k (P), F G
k (P), F P

k (P), F Br
k (P), respectively.

Lemma 1 Beneath–Beyond Theorem[6].
Let us consider d-polytope P ∈ Rn and a point p ∈ Rd such
that p |∈ P, and let P̂ = co (P∪ {p}). Let k ∈ {0, 1, ..., d − 1}
and let

F B
k (P) = F Bl

k (P) ∪ F G
k (P) ∪ F P

k (P) ∪ F Br
k (P), (5)

F PBr
k−1 (P) = (F P

k−1(P) ∪ F Br
k−1(P)), (6)

F̂ PBr
k (P) = { co (F ∪ {p}) | F ∈ F PBr

k−1 (P)}, (7)

and
F Y

k (P) = { co (F ∪ {p}) | F ∈ F Y
k (P)} (8)

Then, the set Fk(P̂) of all k-faces of P̂ is given by

Fk(P̂) = F B
k (P) ∪ F̂ PBr

k (P) ∪ F
Y
k (P) (9)

and

F B
k (P) ∩ F̂ PBr

k (P) = F B
k (P) ∩ F Y

k (P) = ∅, (10)

F̂ PBr
k (P) ∩ F Y

k (P) = ∅. (11)

In [1], it is not mentioned about the dimension of faces,
it is added in [6]. The Beneath–Beyond Method is an algo-
rithm to compute P̂ based on Lemma 1. Lemma 1 means
that we can compute Fk(P̂) if we know Fk(P), Fk−1(P) and
color of them. In other words, if we want to solve the dy-
namic convex hull problem by applying Lemma 1 directly,
then we need to update all F (P̂) and their color.

3. Further Improvement of BB Method

In this section, we consider a dynamic convex hull prob-
lem, that is, for a given d-polytope P0 ∈ Rd and a set of
points {pn ∈ Rd}N−1

n=0 , we want to compute nodes and edges
of {Pn}Nn=1, where

Pn+1 = co (Pn ∪ {pn}), n = 0, 1, 2, · · · ,N − 1. (12)

We will propose a method such that we compute Pn+1 in
(12) using data of Fk(Pn), where k = 0, 1, d − 2, d − 1.

3.1. Data Structure and Coloring

Outline of data structure of Polytope is the following:

• Polytope Pn has lists of {xk ∈ F0(Pn)}, {el ∈ F1(Pn)},
{G j ∈ Fd−2(Pn)}, and {Fi ∈ Fd−1(Pn)}.
• Facet Fi has the normalized normal vector hi, the color

bits (b1, b2, b3), and lists of pointers of {xki ∈ F0(Fi)},
{eli ∈ F1(Fi)}, and {G ji ∈ Fd−2(Fi)}. When F0(F1) =
{x1, x2, · · · , xm}, the normalized normal vector hi is
computed by

hi = (XX�)−1Xe, e =
[
1 1 · · · 1

]� ∈ Rm, (13)

X =
[
x1 x2 · · · xm

]
∈ Rd×m. (14)

• Subfacet G j has the color bits (b1, b2, b3), pointers of
Facets Fij , Fi′j ∈ Fd−1(Pn) such that G j = Fij ∩Fi′j and
pointers of Nodes F0(G j).

• Edge el has the color bits (b1, b2, b3), and pointers of
Nodes xkl , xk′l ∈ node Pn such that el = co (xkl , xk′l).

- 354 -

• Node xk has the d-dimensional vector xk which repre-
sent the location of the node, the color bits (b1, b2, b3),
and the list of pointers of Facets Fik such that xi ∈
F0(Fik).

If we insist to keep symmetry in data structure, we
need to assume that Nodes also has a list of pointers of
{G ji ∈ Fd−2(Fi)} and that Edge el also has a list of pointers
of Facets Fil , Fil ∈ Fd−1(Pn) such that el ∈ F1(Fil). How-
ever, we omitted them, since these data are not used in our
applications.

The color bits (b1, b2, b3) of a Facet Fi, a Subfacet G j, an
Edge el, and a Node xk are represented by Fi.(b1, b2, b3),
G j.(b1, b2, b3), el.(b1, b2, b3), and xk.(b1, b2, b3), respec-
tively. We assume color bits of Facets, Subfacets, Edges
and Nodes are initialized as (000).

When Pn and pn are given, we examine that whether
there is a red Facet or not by the brute force method.

If there is not red Facet, then pn ∈ Pn and we just set
Pn+1 = Pn.

In the following, we consider the case when there are red
facets. When we find a red Facet, we switch to a sophisti-
cated method, which uses the facts that Facets which will
be colored red or yellow are adjacent and that any Subfacet
is the intersection of exactly 2 Facets. This is a modifica-
tion of Procedure 8.7 (Coloring-Phase 1)([1], p. 154).

Suppose that Fi.(b1, b2, b3) has been determined just
now. Then, do the following.
1) For all Edges el ∈ F1(Fi) compute el.(b1, b2, b3) :=
el.(b1, b2, b3) ∨ Fi.(b1, b2, b3).
2) For all Nodes xk ∈ F0(Fi) compute xk.(b1, b2, b3) :=
xk.(b1, b2, b3) ∨ Fi.(b1, b2, b3).
3) For all Subfacets Gi ∈ Fd−2(Fi), visit Gi and compute
G j.(b1, b2, b3) := G j.(b1, b2, b3) ∨ Fi.(b1, b2, b3). Suppose
that G j = Fi ∩ Fi′ . If Fi.(b1, b2, b3) = (010), then do noth-
ing. If Fi.(b1, b2, b3) � (010) and if Fi′ .(b1, b2, b3) � (010),
then do nothing since Fi′ has been already colored. If
Fi.(b1, b2, b3) � (010) and if Fi′ .(b1, b2, b3) = (010), then
determine Fi′ .(b1, b2, b3) and do the above processes 1)–3)
recursively.

In this way, colors of Facets, Subfacets, Edges, Nodes
are determined, and we understand that (b1, b2, b3) = (000)
means that its color is blue.

We memorize all faces whose color code are modified,
and we reset them to (000) before we compute Pn+2 =

co (Pn+1) ∪ {pn+1}). By memorizing them, we can save
computing time very much.

3.2. Computation of Fd−1(Pn+1)

We note that any facet Fi ∈ Fd−1(Pn) is blue, red or yel-
low and that there is no subfacet G j ∈ Fd−2(Pn) which is
brown. Therefore, by Lemma 1, we have

Fd−1(Pn+1) = F Bl
d−1(Pn) ∪ F̂ P

d−1(Pn+1) ∪ F
Y
d−1(Pn+1), (15)

F̂ P
d−1(Pn+1) = { co (F ∪ {pn}) | F ∈ F P

d−2(Pn)}, (16)

F Y
d−1(Pn+1) = { co (F ∪ {pn}) | F ∈ F Y

d−1(Pn)}. (17)

If F ∈ F P
d−2(Pn), then pn � aff F, and, hence, we have

node F̂ = { node F∪{pn}}, where F̂ = co (F∪{pn}). There-
fore, node F̂, F̂ ∈ F̂ P

d−1(Pn+1), is easily computed.
On the other hand, if F ∈ F Y

d−1(Pn), then pn ∈ aff F,
and, in general, we have node F � { node F ∪ {pn}}, where

F = co (F ∪ {pn}) ∈ F Y

d−1(Pn+1). In this case, we need to
determine and eliminate nodes which are not necessary to
represent F. In [6], the following relation is shown

node F = {pn} ∪ (
⋃

G j∈F G
d−2(P;F)

node G j), (18)

where F G
d−2(Pn; F) = {G j ∈ F G

d−2(Pn) | G j ⊆ F}.
In the right side of (18), there is no node which is not

necessary to represent F. But node G j ∩ node G j′ � ∅,
that is, we need to eliminate duplicate elements and leave
exactly one of them. We can do this by a similar method
with the merge sort.

3.3. Computation of Fd−2(Pn+1)

Since we do not have data of F PBr
d−3 (Pn), we can not apply

Lemma 1 to compute Fd−2(Pn+1). Therefore, we need an
alternative method to compute it. To compute Fd−2(Pn+1)
we use the following [6]:

Lemma 2 Let F̃ PY
d−1(Pn+1) = F̂ P

d−1(Pn+1) ∪ F Y
d−1(Pn+1),

where F̂ P
d−1(Pn+1) and F Y

d−1(Pn+1) are given by (16), (17).
Then, Fd−2(Pn+1) is given by

Fd−2(Pn+1) = F B
d−2(Pn) ∪ F̃ PY

d−2(Pn+1) (19)

where

F̃ PY
d−2(Pn+1) =

⋃

F1, F2 ∈ F̃ PY
d−1(Pn+1)

dim(F1 ∩ F2) = d − 2

F1 ∩ F2. (20)

3.4. Computation of F1(Pn+1) and F0(Pn+1)

Since P is a polytope such that 0 ∈ int P and since p �
P, there exist both red facets and blue facets, and, hence,

there is no yellow node. Therefore, F Y

0 (P) = ∅. On the
other hand, F PBr

−1 (P) = φ, which is colored purple or brown,
and, hence, F̂ PBr

0 (P) = {p}. Therefore, by Lemma 1, we
have

F1(Pn+1) = F B
1 (Pn) ∪ F̂ PBr

1 (Pn) ∪ F
Y
1 (Pn), (21)

F B
1 (Pn) = F Bl

1 (Pn) ∪ F G
1 (Pn)

∪ F P
1 (Pn) ∪ F Br

1 (Pn), (22)

F̂ PBr
1 (Pn) = { co (F ∪ {pn}) | F ∈ F PBr

0 (Pn)}, (23)

F PBr
0 (Pn) = F P

0 (Pn) ∪ F Br
0 (Pn), (24)

F Y

1 (Pn) = { co (F ∪ {pn}) | F ∈ F Y
1 (Pn)}, (25)

F0(Pn+1) = F Bl
0 (Pn) ∪ F G

0 (Pn) ∪ F P
0 (Pn)

∪ F Br
0 (Pn) ∪ {pn}. (26)

- 355 -

3.5. Numerical Experiments

When d = 3, both Subfacet and Edge in our data struc-
ture are F1(P), and, hence, the original BB method may be
more efficient. Similarly, when d = 4, we may have similar
result. Therefore, we will examine the case when d ≥ 5.
Let P0 be a very small polytope and we will generate vec-
tors {pn ∈ Rd}Ni=1 on the unit sphere, and solve convex hull
problem. Computing time is the following:

C
PU

tim
e(

10
3

se
c)

| node P5|/1000 (d = 5)

o: original MM

+: proposed method

14

12

10

8

6

4

3

2

21
0
0

C
PU

tim
e(

10
4

se
c)

| node P6|/100 (d = 6)

o: original MM
+: proposed method

10

8

6

4

2

12108642
0
0

We also apply the proposed method to construct MASs.
Let us consider a position servomechanism consists of a
DC motor, a gear-box, an elastic shaft and an uncertain
load. This plant is modeled as a 4 dimensional system.
Controller is a 4 dimensional dynamic controller. Thus, we
consider 8 dimensional systems See [15] for details. We
construct MASs for this system. If we use the original BB
method, it takes about 1 hour to compute a MAS, while we
can construct this in 6 seconds by the proposed method.

4. Conclusion

In this paper, we we modified the BB method in [6] so
that it also maintains data of edges too. By this, this new
BB method not only recovers symmetry in data structure,
but also keep the superiority in efficiency. The computing
time of the proposed method is 1/1.3 (1/2, respectively)
that of the original beneath–beyond method when d = 5
(d = 6, respectively). We expect that this ratio will be
small as g becomes large.

References

[1] H. Edelsbrunner, Algorithms in Combinatorial Ge-
ometry, Springer-Verlag Berlin Heidelberg, 1987.

[2] H. H. Rosenbrock: A method of investigating stabil-
ity, Proc. 2nd IFAC World Congress, Basel, Switzer-
land, pp. 590-594, 1963.

[3] R. K. Brayton and C. H. Tong: Stability of dynamical
systems: a constructive approach, IEEE Trans. Cir-
cuits and Systems, Vol.CAS-26, No.4, pp. 224-234,
1979.

[4] Y. Ohta, H. Imanishi, L. Gong and H. Haneda: Com-
puter generalized Lyapunov functions for a class
of nonlinear systems, IEEE Trans. on Circuits and
Systems-I, Vol.40, No.5, pp. 343-354, 1993.

[5] F. Blanchini: Nonquadratic Lyapunov functions for
robust control, Automatica, Vol. 31, No. 3, pp. 451-
461, 1995.

[6] Y. Ohta, Y. Nagai and L. Gong, “Beneath-Beyond
Method and Construction of Lyapunov Functions,”
Proc. NOLTA’97, pp. 353-356 (1997).

[7] Y. Ohta and K. Yamamoto, “Stability Analysis of
Nonlinear Systems via Piecewise Linear Lyapunov
Functions,” Proc. of ISCAS 2000, II, pp. 208–211,
2000.

[8] Yuzo Ohta, “On the Construction of Piecewise Linear
Lyapunov Functions,” Proc. of CDC 2001, pp. 2173-
2178, 2001.

[9] E. G. Gilbert and K. T. Tan, “Linear system with state
and control constraints: the theory and application of
maximal output admissible sets,” IEEE Trans. on Au-
tomatic Control, vol. 36, pp. 1008–1020, 1991.

[10] E. G. Gilbert and I. Kolmanovsky, “Nonlinear track-
ing control in the presence of state and control con-
straints : a generalized reference governor,” Automat-
ica, vol. 38, pp. 2063–2073, 2002.

[11] K. Hirata and M. Fujita, “Set of admissible reference
signals and control of systems with state and control
constraints,” Proc. of CDC, pp. 1427–1432, 1999.

[12] K. Kogiso and K. Hirata, “A reference governor
in a piecewise state affine function,” Proc. of CDC,
pp. 1747–1752, 2003.

[13] Y. Ohta, T. Taguchi and T. Yamaguchi, “On-line ref-
erence inputs management for constrained servo sys-
tems,” Proc. of NOLTA’06, pp. 891–894, 2006.

[14] Y. Ohta and H.Tanizawa, “On approximation of max-
imal admissible sets for nonlinear continuous-time
systems with constraints,” Proc. of ACC07 (to ap-
pear), 2007.

[15] A. Bemporad and E. Mosca, “Fulfilling hard con-
straints in uncertain linear systems by reference man-
aging,” Automatica, vol. 34, pp. 451-461, 1998.

- 356 -

	Navigation page
	Session at a glance
	Technical program

