
An Investigation on the Absolute Stability of Discrete and
Continuous Time Lur’e Systems

Roisin Duignan† and Paul F. Curran†

†School of Electrical, Electronic and
Mechanical Engineering,

UCD Dublin,
Belfield, Dublin 4, Ireland.

Email: roisin.duignan@ee.ucd.ie, paul.curran@ucd.ie

Abstract—In this paper sufficent conditions for the
absolute stability of discrete time and continuous time
single variable Lur’e systems are investigated numer-
ically. These conditions are expressed as simple re-
strictions on the root locus of the system. If these
conditions hold it is shown that a Liapunov function
exists for the system.

1. Introduction

In recent years there has been rapid development
in the study of switched systems, giving rise to many
questions regarding their stability. A switched control
system is a type of hybrid dynamical system [1] con-
sisting of continuous and/or discrete time processes in-
terfaced with some decision making process, which es-
timates the current active environment and selects the
appropriate controller. Switched systems have many
practical applications in both electrical and mechani-
cal control systems. Applications include power sys-
tems, power electronics, air traffic control, aircraft and
satellites [2],[3]. The technique of switching among
different controllers or switching into different states
can provide a significant improvement in performance
compared to that of a fixed controller [4].

The type of dynamical systems investigated here
are:
1) Discrete time 2nd order single variable Lur’e sys-
tems of the form

xi+1 = Ãxi − kib̃c̃
T xi, |ki| ≤ 1 (1)

where, Ã ∈ <2×2, b̃, c̃ ∈ <2 are linearly independent
constant vectors of the form c̃T =

[
c2 c1

]
∈ <2

and b̃T =
[

0 1
]
∈ <2 and

G̃(z) = c̃T (zI −A)−1b̃ =
Ñ(z)
D̃(z)

.

2) Continuous time nth order single variable Lur’e sys-
tems of the form

ẋ = Ax− k(x, t)bcT x, k(x, t) ≥ 0 (2)

where, A ∈ <n×n, b, c ∈ <n are linearly independent
constant vectors of the form cT =

[
ĉT 1

]
, ĉ ∈ <n−1

and bT =
[

0̂T 1
]
, 0̂ ∈ <n−1 and

G(s) = cT (sI −A)−1b =
N(s)
D(s)

.

The problem of interest is the absolute stability of
class (1) and (2). Many stability criteria have been
derived for Lur’e systems. One criterion of particular
importance is the well known Circle Criterion [5],[6],[7]
since it applies to time-varying systems and is equiva-
lent to the existence of a common quadratic Liapunov
function [8]. In recent years, much research on the
stability of Lur’e systems has focused on constructing
common Liapunov functions. Molchanov and Pyat-
nitski [9] establish a necessary and sufficient condition
for absolute stability of time-varying Lur’e systems is
the existence a common Liapunov function. However
testing the existence of these common Liapunov func-
tions requires the use of numerical procedures in gen-
eral [10].

In [11],[12],[13] 2nd order Lur’e systems of the form
(2) are investigated. Wulff et al.[12] establish abso-
lute stability conditions that have a simple geometri-
cal form and are therefore readily tested. If the roots
of the polynomial D(s) + σN(s) for all σ ≥ 0 are re-
stricted to the 450 region (see Figure 1), a common
unic Liapunov function or a common quadratic Lia-
punov function exists. In [13] it is shown that if the
roots of the polynomial D(s) + σN(s) for all σ ≥ 0
lie in the 450 region a common piecewise quadratic
Liapunov function exists.

In this paper absolute stability conjectures for class
(1) and (2) are investigated numerically. These con-
jectures all have a simple geometrical form. For class
(1) numerical investigations suggest that if the roots
of D̃(z)+σÑ(z) lie in the Discrete-450 region, i.e. the
discrete time analog of the 450 region (see Figure 2),
for |σ| ≤ 1 then class (1) is absolutely stable and a
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Figure 1: The 450 region
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Figure 2: The Discrete-450 region
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Figure 3: The Diamond region
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Figure 4: The Super-450 region

unic Liapunov function exists. For class (1) another
stability region, the Diamond region (see Figure 3) is
investigated. Numerical investigations suggest that if
the roots of D̃(z) + σÑ(z) lie in the Diamond region
for |σ| ≤ 1 then class (1) is absolutely stable and a
common piecewise quadratic Liapunov function exists.
For class (2) with n = 2 and n = 3 numerical investi-
gations show that if roots of D(s) + σN(s) lie in the
Super-450 region for σ ≥ 0, (see Figure 4), then class
(2) is absolutely stable.

2. Mathematical Preliminaries

In this section some useful definitions are presented.

Definition 1: Discrete-450 Condition
The roots of polynomial D̃(z) + σÑ(z) lie in the

Discrete-450 region for all |σ| ≤ 1.

Definition 2: Diamond Condition
The roots of polynomial D̃(z) + σÑ(z) lie in the

Diamond region for all |σ| ≤ 1.

Definition 3: Super-450 Condition
The roots of polynomial D(s) + σN(s) lie in the

Super-450 region for all σ ≥ 0.

3. The Discrete-450 Condition and the Abso-
lute Stability of 2nd order discrete time
Lur’e systems

In this section examples of discrete time Lur’e sys-
tems of the form (1) are investigated numerically. The
aim is to show using numerical investigations that the
Discrete-450 condition is a sufficient condition for ab-
solute stability. This will also provide strong evidence
as to a possible analytical proof of this condition.
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The absolute stability of these systems are investi-
gated using the following method.

Method 1:
Polanski [14] has formulated the search for unic Li-
apunov functions as a linear programming problem.
Using this method we determine whether a Liapunov
function of the form

V (xi) = ‖Mxi‖1 (3)

exists for class (1) where M ∈ <2×2. (3) is a Liapunov
function for class (1) if there exists a matrix Q such
that

MÃ−QM = 0 and ‖Q‖1 < 0. (4)

Results:
Five thousand Lur’e systems of the form (1) that

satisfy the Discrete-450 condition were randomly gen-
erated. For half of these systems the eigenvalues of Ã
are real and for half the eigenvalues of Ã are a com-
plex conjugate pair. By Method 1 99 percent of sys-
tems tested were found to be absolutely stable. The
remaining 1 percent of systems were found to be ab-
solutely stable by the discrete-time Circle Criterion.

These results provide strong evidence that for class
(1) the Discrete-450 condition implies absolute stabil-
ity. They also suggest that the Discrete-450 condition
implies the existence of a common unic Liapunov func-
tion or a common quadratic Liapunov function.

4. The Diamond Condition and the Absolute
Stability of 2nd order discrete time Lur’e
systems

In this section examples of discrete time Lur’e sys-
tems of the form (1) are once again investigated numer-
ically. The motivation being to investigate whether the
Diamond condition is a sufficient condition for abso-
lute stability and to gain insight into how to prove this
condition.

The absolute stability of these systems are investi-
gated using the following method.

Method 2:
In [15],[16] the search for common piecewise

quadratic Liapunov functions is formulated as a con-
vex optimization problem which is expressed in terms
of linear matrix inequalities (LMI’s). Using this
method we determine whether a common piecewise
quadratic Liapunov function of the form

V (xi) =
{

xi
T P 1xi for (bT xi)(cT xi) > 0

xi
T P 2xi for (bT xi)(cT xi) < 0.

(5)

where P1 = PT
1 ∈ <2×2 and P2 = PT

2 ∈ <2×2 exists
for class (1).

Results:
Five thousand Lur’e systems of the form (1) that

satisfy the Diamond condition were randomly gener-
ated. For half of these systems the eigenvalues of Ã
are real and for half the eigenvalues of Ã are a complex
conjugate pair. By Method 2 all systems were found
to be absolutely stable.

These results provide strong evidence that for class
(1) the Diamond condition implies absolute stability.
They also suggest that the Diamond condition implies
the existence of a common piecewise quadratic Lia-
punov function.

5. The Super-450 Condition and the Absolute
Stability of continuous time Lur’e systems

In this section examples of 2nd order and 3rd order
continuous time Lur’e systems of the form (2) are in-
vestigated numerically. Since previous investigations
have shown the importance of the 450 region in estab-
lishing the absolute stability of class (2), we investi-
gated whether the absolute stability of this class could
be established using a larger region, the Super-450 re-
gion.

The absolute stability of these systems are investi-
gated using the following method.

Method 3:
Using the method of Johansson and Rantzer [15]

we determine whether a common piecewise quadratic
Liapunov function of the form

V (x) =
{

xT P 1x for (bT x)(cT x) > 0
xT P 2x for (bT x)(cT x) < 0.

(6)

where P1 = PT
1 ∈ <2×2 and P2 = PT

2 ∈ <2×2 exists
for class (2).

Results:
Five thousand 2nd order Lur’e systems of the form

(2) that satisfy the Super-450 condition were randomly
generated. For half of these systems the eigenvalues
of A are real and for half the eigenvalues of A are a
complex conjugate pair. By Method 3 all systems were
found to be absolutely stable.

Five thousand 3rd Lur’e systems of the form (2)
that satisfy the Super-450 condition were randomly
generated. For half of these systems the eigenvalues
of A are real and for half the eigenvalues of A contain
a complex conjugate pair. By Method 3 all systems
were found to be absolutely stable.

These results provide strong evidence that for class
(2) with n = 2 and n = 3 the Super-450 condition
implies absolute stability. They also suggest that the
Super-450 condition implies the existence of a common
piecewise quadratic Liapunov function.
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6. Conclusions and Future Work

Sufficient conditions for the absolute stability of low
order discrete time and continuous time Lur’e system
are investigated numerically. These conditions have a
simple geometrical form. For thousands of randomly
generated systems of the form (1) the Discrete-450 con-
dition implies absolute stability by the existence of a
unic Liapunov function. Similarly the Diamond Con-
dition implies absolute stability of randomly generated
systems of the form (1) by the existence of a common
piecewise quadratic Liapunov function. For 2nd and
3rd order continuous time systems of the form (2) nu-
merical investigations show that the Super-450 con-
dition implies absolute stability by the existence of a
common piecewise quadratic Liapunov function.

Given this numerical evidence future work will fo-
cus on proving that the Discrete-450 condition and the
Diamond Condition are indeed sufficient conditions for
the absolute stability of class (1) and that the Super-
450 condition is a sufficient condition for the absolute
stability of class (2).
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