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Abstract—We explore an unusual bursting mechanism
in a two-mode semiconductor laser with single-mode op-
tical injection. By changing the injection strength and
frequency detuning (between the injected mode and the
injected light) we find a striking transition from purely
single-mode intensity oscillations to sudden bursting in the
intensity of the second mode. This phenomenon is organ-
ised by a pair of codimension-two bifurcations which are
formed by interactions between saddle-node and pitchfork
(of limit cycles) bifurcations.

1. Introduction

Bursting is a striking feature of a wide range of physi-
cal and biological systems. Well known examples include
neuroscience [1], the Taylor–Couette flow [2, 3], and tur-
bulence in boundary layers [4, 5]. Furthermore, if invariant
manifolds or symmetries are present in the underlying sys-
tems one can find unusual mechanisms that lead to burst-
ing, e.g. bubbling and riddled-basins [6, 7]. A better un-
derstanding of the mechanisms responsible for bursting in
systems with invariant manifolds would be of wider inter-
est.

In this paper we study an experimentally accessible and
technologically relevant example of a system with an in-
variant manifold that exhibits bursting, namely an optically
injected two-mode semiconductor laser.

2. Experimental Setup

The device we use is a multi-quantum well InGaAlP/InP
Fabry-Perot (FP) laser of length 350µm. Mode selection
is achieved by perturbing the FP spectrum using slotted re-
gions etched into the ridge waveguide. Further details of
the design of these lasers and their free running character-
istics can be found in Ref. [8]. Figure 1 shows the optical
spectrum of the two-mode laser. The large frequency spac-
ing (∼480 GHz) results in a weak coupling between the two
modes and therefore stable and simultaneous lasing.

For our experiment, the two-mode laser is in a tempera-
ture controlled environment and is used in the master-slave
configuration, as shown in Fig. 1. Light from the master
laser, a tunable laser with less than 100 kHz linewidth, is
injected into the long wavelength mode of the slave, two-
mode laser. We use optical isolators to eliminate unwanted
optical feedback, in-line fibre bandpass filters to monitor

Figure 1: Top: experimental setup of a two-mode laser
(slave) with single-mode injection (master). Bottom: the
spectrum of the free-running two-mode laser.

each of the modes, and the bandwidth of our system is 8
GHz.

3. Laser Rate Equations

A simple four-dimensional set of ODEs has been shown
to accurately capture a number of experimentally observed
dynamical phenomena for the setup shown in Fig. 1. The
time-dependent variables in this model are: the magnitude
of the uninjected mode,|E1(t)|, the complex field of the
injected mode,E2(t), and the excess carrier density,N(t).
In dimensionless form it is given by [9]

d|E1|

dt
=

1
2

((2N + 1)g1 − 1) |E1| ,

dE2

dt
=

[

1
2

((2N + 1)g2 − 1)(1+ iα) − i∆ω

]

E2 + K ,

T
dN
dt

= P − N − (1+ 2N)
2
∑

m=1

gm|Em|
2 . (1)

The bifurcation parameters are the normalised strength of
the injected light,K, and the normalised frequency detun-
ing between the injected mode and the injected light,∆ω.
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Further parameters are the coupling,α, between the magni-
tude and phase ofE2; the product of carrier lifetime and the
cavity decay rate,T ; and the normalised pump current,P.
The two modes are coupled throughN(t) via the nonlinear
modal gain

g1 =
[

1+ ǫ
(

β11|E1|
2 + β12|E2|

2
)]−1
,

g2 =
[

1+ ǫ
(

β21|E1|
2 + β22|E2|

2
)]−1
,

whereǫβmm is the self saturation of a mode, andǫβmn (m ,
n) is the cross saturation between modes. For this paper
we fix ǫ = 0.1, β11 = β22 = 1, β12 = β21 =

2
3, α = 2.6,

T−1 = 0.00125, andP = 0.5 (twice threshold).
The phase space of system (1) features a three-

dimensional sub-manifold,

M = { (|E1|,Re(E2), Im(E2),N) ∈ R4 : |E1| = 0 } ,

which is invariant under the time evolution of (1). We re-
fer toM as thesingle-mode manifold since the dynamics
onM reduce to that of the well-studied single-mode injec-
tion problem [10, 11]. To facilitate our discussion we term
attractors of system (1)single-mode attractors if they are
contained inM, andtwo-mode attractors if not. A single-
mode attractor corresponds to only the injected mode be-
ing ‘on’, whereas a two-mode attractor correspond to both
modes being ‘on’. We also note that system (1) has a for-
mal Z2 symmetry due to the transformation|E1| → −|E1|.
Physically, only positive field magnitudes are relevant.

4. Local Bifurcation Analysis

The global bifurcation structure of system (1) has been
reported in Ref. [9]. Here we focus on a region of the
(K,∆ω) parameter plane (Fig. 2) with interesting transi-
tions from a single-mode limit cycle (grey shading) to a
two-mode attractor (no shading).

In Fig. 2 the boundary of the grey region contains
two saddle-node-pitchfork of limit cycle (SPL) bifurcation
points. These two points are formed by tangencies between
a curve of saddle-node of limit cycle (SL) bifurcations and
a curve of pitchfork of limit cycle (PL) bifurcations. Con-
necting the two SPL points is a curve of supercritical torus
(T) bifurcations. A two-mode torus is created when this
curve is crossed by increasing∆ω.

The SPL points divide the grey region’s boundary into
three segments. From left to right in Fig. 2, the first and
last segments correspond to curves of supercritical PL bi-
furcations. Crossing either of these segments by decreasing
∆ω results in two stable two-mode limit cycles bifurcating
out of the single-mode manifoldM. The magnitude of the
uninjected mode is negative for one of these limit cycles
and so we discuss it no further. The middle segment of the
grey region’s boundary corresponds to a curve of SL bifur-
cations. Crossing this segment by decreasing∆ω destroys
a stable single-mode limit cycle.
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Figure 2: Two-parameter bifurcation diagram. Bifurcations
of limit cycles are saddle-node (SL), pitchfork (PL), torus
(T), and saddle-node-pitchfork (SPL). The grey shading is
the stability region of a single-mode limit cycle. Inset: a
sketch showing the arrangement of bifurcation curves close
to the SPL point at highK.
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Figure 3: Power spectra of the injected mode as a func-
tion of the detuning∆ω obtained from numerics (left) and
experiment (right). The strength of the injected light in-
creases fromK = 0.006 (top row) toK = 0.0095 (bottom
row).
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Figure 4: Time series of the uninjected mode forK =

0.0092 and different values of∆ω along the black line in
Fig. 2. Decreasing∆ω causes the frequency of the bursts
to increase.

To illustrate the transitions from a single-mode limit cy-
cle to a two-mode attractor we present power spectra of the
injected mode in Fig. 3. Each row corresponds to a differ-
ent fixed value of the injection strengthK, and the power
spectra are shown as functions of the frequency detuning
∆ω. The agreement between the numerically calculated
power spectra (left column of Fig. 3) and the experimen-
tally measured power spectra (right column of Fig. 3) is
excellent, and justifies a deeper analysis of the dynamics
in system (1). Let us first consider row 1. For high∆ω
the system has a dominant frequency which corresponds to
beating between the injected light and the injected mode.
Lowering∆ω causes the dominant frequency to decrease
and then remain approximately constant at the relaxation
oscillation. We also see this same structure in row 6 and
identify it as being due to supercritical PL bifurcations on
the boundary of the grey region in Fig. 2. The power spec-
tra in rows 2–5 are qualitatively similar so we just describe
row 4. Again, at high∆ω the system has a dominant fre-
quency. However, when∆ω is decreased, a star-like struc-
ture develops. This star-like structure is a consequence of
low frequency oscillations that are also visible in the power
spectra. The star-like structure and low frequency oscilla-
tions in rows 2–5 are not fully explained by local SL bifur-
cations alone. We also need to consider global aspects of
the dynamics in system (1).

5. Global Bifurcations Lead to Bursting

The low frequency oscillations detected in Fig. 3 are as-
sociated with bursting dynamics. Figure 4 contains time
series of the uninjected-mode for parameter values below
SL and along the black vertical line in Fig. 2. For fre-
quency detunings∆ω close to the SL bifurcation curve
there are large intervals of time where trajectories of system
(1) stay close to the single-mode manifoldM, followed by
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Figure 5: Two-dimensional projections from the Poincaré
section defined by Im(E2) = 0. (a)–(d) are representative of
the dynamics in regions (i)–(iv) from Fig. 2. Fixed-points
correspond to single-mode (circles), and two-mode (trian-
gles) limit cycles. Their stability is indicated by shading:
full=stable, open=unstable, and half-full=nonhyperbolic.
K = 0.00933.

shorter time intervals where trajectories make excursions
away fromM. These excursions show up as bursts in the
uninjected mode (Fig. 4(a)). Moving away from the SL bi-
furcation curve (decreasing∆ω) causes the frequency of
the bursts to increase (Fig. 4(b)–(c)). This bursting be-
haviour is a consequence of a global bifurcation which we
now describe with the aid of a Poincaré section.

Figure 5 contains two-dimensional projections from the
Poincaré section defined by Im(E2) = 0. In these projec-
tions the line|E1| = 0 corresponds to the single-mode man-
ifoldM, and fixed-points correspond to limit cycles of sys-
tem (1). We start with parameter values from region (i) of
Fig. 2. Here, system (1) has three single-mode limit cy-
cles, one of which is stable (Fig. 5(a)). Decreasing∆ω
through the PL bifurcation curve into region (ii) of Fig. 2
results in an unstable two-mode limit cycle bifurcating out
of the single-mode manifoldM, and the middle single-
mode limit cycle gaining transverse stability (Fig. 5(b)).
Decreasing∆ω further leads to two simultaneous events.
First, two single-mode limit cycles collide and form a non-
hyperbolic limit cycle which is transversally stable. Sec-
ond, a heteroclinic cycle is formed which connects the non-
hyperbolic limit cycle to a transversally unstable limit cycle
(Fig. 5(c)). This global bifurcation occurs along the SL bi-
furcation curve marked by (iii) in Fig. 2, close to the SPL
bifurcation point. Decreasing∆ω further into region (iv)
of Fig. 2 causes the nonhyperbolic limit cycle to disappear
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and leads to the creation of stable torus (Fig. 5(d)).
The mechanism for bursting close to the right-most SPL

point is thus as follows: for (K,∆ω) close to but below
the curve marked by a (iii) in Fig. 2, trajectories spend
along time travelling through a slow region of phase space
close to the single-mode manifoldM. While trajectories
are travelling through this region they are attracted toward
M. Once through the slow region they shadow the dynam-
ics inM and are thus attracted to a transversally unstable
single-mode limit cycle. The trajectories are then repelled
away fromM and then globally reinjected via the torus.

6. Summary

We studied, theoretically and experimentally, a two-
mode semiconductor laser with single-mode injection. By
changing the strength and frequency of the injected light
we identified two contrasting transitions from single-mode
oscillations to two-mode oscillations. On the one hand, a
supercritical pitchfork of limit bifurcation leads to a grad-
ual turning on of the uninjected mode. On the other hand,
a saddle-node bifurcation of global type leads to sudden
bursts in the magnitude of the uninjected mode.
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