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Abstract—We explore an unusual bursting mechanism ' BS
in a two-mode semiconductor laser with single-mode op- [ ESs ::
tical injection. By changing the injection strength and
frequency detuning (between the injected mode and the
injected light) we find a striking transition from purely
single-mode intensity oscillations to sudden burstindnin t
intensity of the second mode. This phenomenon is organ- OSA
ised by a pair of codimension-two bifurcations which are
formed by interactions between saddle-node and pitchfork

(of limit cycles) bifurcations. 0 — : :
o

1. Introduction CHR
=

Bursting is a striking feature of a wide range of physi- % 40

cal and biological systems. Well known examples include =

neuroscience [1], the Taylor—-Couette flow [2, 3], and tur- . 1 .

bulence in boundary layers [4, 5]. Furthermore, if invarian 1290 1300 1310

manifolds or symmetries are present in the underlying sys- Wavelength (nm)

tems one can find unusual mechanisms that lead to burgiyyre 1: Top: experimental setup of a two-mode laser

ing, €.g. bubbling and riddled-basins [6, 7]. A better un¢sjave) with single-mode injection (master). Bottom: the
derstanding of the mechanisms responsible for bursting §hectrum of the free-running two-mode laser.

systems with invariant manifolds would be of wider inter-
est.
In this paper we study an experimentally accessible arffich of the modes, and the bandwidth of our system is 8
technologically relevant example of a system with an inGHz.
variant manifold that exhibits bursting, namely an optical
injected two-mode semiconductor laser. 3. Laser Rate Equations

A simple four-dimensional set of ODEs has been shown
to accurately capture a number of experimentally observed

The device we use is a multi-quantum well InGa/\fP dynamical phenomena for the setup shown in Fig. 1. The
Fabry-Perot (FP) laser of length 368. Mode selection time-dependent variables in this model are: the magnitude
is achieved by perturbing the FP spectrum using slotted r&f the uninjected modeF(t)], the complex field of the
gions etched into the ridge waveguide. Further details dfjected modeFx(t), and the excess carrier densily(t).
the design of these lasers and their free running characté-dimensionless form it is given by [9]
istics can be found in Ref. [8]. Figure 1 shows the optical dE,|
spectrum of the two-mode laser. The large frequency spac=g—
ing (~480 GHz) results in a weak coupling between the two dE,
modes and therefore stable and simultaneous lasing. —

For our experiment, the two-mode laser is in a tempera- dt
ture controlled environment and is used in the master-slave_ dN 2 2
configuration, as shown in Fig. 1. Light from the master TE = P-N-(1+2N) nglEml ‘ @)
laser, a tunable laser with less than 100 kHz linewidth, is m=1
injected into the long wavelength mode of the slave, twoFhe bifurcation parameters are the normalised strength of
mode laser. We use optical isolators to eliminate unwantdte injected lightK, and the normalised frequency detun-
optical feedback, in-line fibre bandpass filters to monitoing between the injected mode and the injected liglat,

2. Experimental Setup

1
5 (@N+1)g - DIEL,

[%((ZN +1g - 1)(1+ia) - iAw|Ez + K,
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Further parameters are the couplingbetween the magni-
tude and phase @;; the product of carrier lifetime and the
cavity decay rateJ ; and the normalised pump curref,

The two modes are coupled throulykt) via the nonlinear (Gﬁi’z) -
modal gain 4t

01 = [1 + E(ﬂnl Eaf +ﬂ12IE2|2)]_1 ; 36

G = [L+ €(BalEsl + BolE2P)| .
3.2}
whereeBmm is the self saturation of a mode, agéhy, (m # |
n) is the cross saturation between modes. For this pape
we fix e = 0.1,,311 = ,822 = 1,,812 = ,821 = :—2;, a = 26, 281
T~ =0.00125, ancP = 0.5 (twice threshold).
The phase space of system (1) features a three
dimensional sub-manifold,

0.007 0.008 0.009 K

M ={ (E1l,ReE2), Im(E;),N) eR* : |E4/=0}, Figure 2: Two-parameter bifurcation diagram. Bifurcagon
of limit cycles are saddle-node (SL), pitchfork (PL), torus

which is invariant under the time evolution of (1). We re<(T), and saddle-node-pitchfork (SPL). The grey shading is
fer to M as thesingle-mode manifold since the dynamics the stability region of a single-mode limit cycle. Inset: a
on M reduce to that of the well-studied single-mode injecsketch showing the arrangement of bifurcation curves close
tion problem [10, 11]. To facilitate our discussion we termto the SPL point at higk.
attractors of system (1gngle-mode attractors if they are
contained inM, andtwo-mode attractors if not. A single-
mode attractor corresponds to only the injected mode be-
ing ‘on’, whereas a two-mode attractor correspond to both
modes being ‘on’. We also note that system (1) has a for-
mal Z, symmetry due to the transformati¢iy| — —|Ej].
Physically, only positive field magnitudes are relevant.

4. Local Bifurcation Analysis

The global bifurcation structure of system (1) has bee
reported in Ref. [9]. Here we focus on a region of they
(K, Aw) parameter plane (Fig. 2) with interesting transi- &
tions from a single-mode limit cycle (grey shading) to ag
two-mode attractor (no shading).

In Fig. 2 the boundary of the grey region contains
two saddle-node-pitchfork of limit cycle (SPL) bifurcatio
points. These two points are formed by tangencies betwe:

a curve of saddle-node of limit cycle (SL) bifurcations anc
a curve of pitchfork of limit cycle (PL) bifurcations. Con-
necting the two SPL points is a curve of supercritical toru
(T) bifurcations. A two-mode torus is created when this
curve is crossed by increasing.

The SPL points divide the grey region’s boundary intc
three segments. From left to right in Fig. 2, the first anc
last segments correspond to curves of supercritical PL k.
furcations. Crossing either of these segments by deciggasin o
Aw results in two stable two-mode limit cycles bifurcatingfigure 3: Power spectra of the injected mode as a func-
out of the single-mode manifol. The magnitude of the 10N of the detuning\w obtained from numerics (left) and
uninjected mode is negative for one of these limit cycle§XPeriment (right). The strength of the injected light in-
and so we discuss it no further. The middle segment of tH&€ases fronK = 0.006 (top row) tok = 0.0095 (bottom
grey region’s boundary corresponds to a curve of SL bifufOW)-
cations. Crossing this segment by decreagingdestroys
a stable single-mode limit cycle.

frequency [GHz] frequency [GHz]
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Figure 4: Time series of the uninjected mode for=
0.0092 and dferent values of\w along the black line in A
Fig. 2. Decreasindww causes the frequency of the bursts T L T
to increase. of © © o
0.95 Re(Eg) 1.05 0.95 Re(EQ) 1.05

To illustrate the transitions from a single-mode limit cy-
cle to a two-mode attractor we present power spectra of tfi@ggure 5: Two-dimensional projections from the Poincaré
injected mode in Fig. 3. Each row corresponds toffedi ~ section defined by Inf;) = 0. (a)—(d) are representative of
ent fixed value of the injection strengkh and the power the dynamics in regions (i)—(iv) from Fig. 2. Fixed-points
spectra are shown as functions of the frequency detuniggrrespond to single-mode (circles), and two-mode (trian-
Aw. The agreement between the numerically calculategles) limit cycles. Their stability is indicated by shading
power spectra (left column of Fig. 3) and the experimerfull=stable, opeaunstable, and half-fuinonhyperbolic.
tally measured power spectra (right column of Fig. 3) ig = 0.00933.
excellent, and justifies a deeper analysis of the dynamics

in system (1). Let us first consider row 1. For high L . . .
the system has a dominant frequency which correspondsstlaorter time intervals where trajectories make excursions

beating between the injected light and the injected mod&"aY frorgM. C;I’hes_e excursions_show upfas buLsts inghe
Lowering Aw causes the dominant frequency to decreaé‘én'nle_(:te mode (Fig. 4(5_‘))‘ Moving away from the SL bi-
and then remain approximately constant at the relaxatiJ rcation curve (decreasingw) causes the frequency of

oscillation. We also see this same structure in row 6 arid® PUrSts to increase (Fig. 4(b)—(c)). This bursting be-
identify it as being due to supercritical PL bifurcations 0:}1aV|our is & consequence of a global bifurcation which we
the boundary of the grey region in Fig. 2. The power spedl0W describe with the aid of a Poincaré section.

tra in rows 25 are qualitatively similar so we just describe Figure 5 contains two-dimensional projections from the
row 4. Again, at highAw the system has a dominant fre-Poincaré section defined by IB{) = 0. In these projec-
quency. However, whefw is decreased, a star-like struc-{ions the lingEy| = 0 corresponds to the single-mode man-
ture develops. This star-like structure is a consequence ##!d M, and fixed-points correspond to limit cycles of sys-
low frequency oscillations that are also visible in the powel€Mm (1). We start with parameter values from region (i) of
spectra. The star-like structure and low frequency oscilld19- 2. Here, system (1) has three single-mode limit cy-
tions in rows 2—5 are not fully explained by local SL bifur-clés, one of which is stable (Fig. 5(a)). Decreasing

cations alone. We also need to consider global aspectsthfough the PL bifurcation curve into region (ii) of Fig. 2
the dynamics in system (1). results in an unstable two-mode limit cycle bifurcating out

of the single-mode manifoldM, and the middle single-

mode limit cycle gaining transverse stability (Fig. 5(b)).

5. Global Bifurcations Lead to Bursting DecreasingAw further leads to two simultaneous events.

First, two single-mode limit cycles collide and form a non-

The low frequency oscillations detected in Fig. 3 are adiyperbolic limit cycle which is transversally stable. Sec-

sociated with bursting dynamics. Figure 4 contains timend, a heteroclinic cycle is formed which connects the non-

series of the uninjected-mode for parameter values beldwperbolic limit cycle to a transversally unstable limity

SL and along the black vertical line in Fig. 2. For fre-(Fig. 5(c)). This global bifurcation occurs along the SL bi-

guency detuningdw close to the SL bifurcation curve furcation curve marked by (iii) in Fig. 2, close to the SPL

there are large intervals of time where trajectories ofayst bifurcation point. Decreasingw further into region (iv)

(1) stay close to the single-mode manifdid, followed by  of Fig. 2 causes the nonhyperbolic limit cycle to disappear
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and leads to the creation of stable torus (Fig. 5(d)).

The mechanism for bursting close to the right-most SPL
point is thus as follows: forK, Aw) close to but below
the curve marked by a (iii) in Fig. 2, trajectories spend
along time travelling through a slow region of phase space
close to the single-mode manifoldf. While trajectories
are travelling through this region they are attracted towar

M. Once through the slow region they shadow the dynamlg]

ics in M and are thus attracted to a transversally unstable
single-mode limit cycle. The trajectories are then repklle
away fromM and then globally reinjected via the torus.

(10]

6. Summary

We studied, theoretically and experimentally, a two-
mode semiconductor laser with single-mode injection. By

changing the strength and frequency of the injected lighi1]

we identified two contrasting transitions from single-mode
oscillations to two-mode oscillations. On the one hand, a
supercritical pitchfork of limit bifurcation leads to a gka

ual turning on of the uninjected mode. On the other hand,
a saddle-node bifurcation of global type leads to sudden
bursts in the magnitude of the uninjected mode.
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