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Abstract-An efficient auxiliary space preconditioning (ASP) 
was proposed for the linear matrix equation that was formed by 
the frequency-domain finite element method. A new two-level 
spectral preconditioning utilizing auxiliary space preconditioning 
is presented to solve the linear system. This technique is a 
combination of ASP and a low-rank update spectral 
preconditioning, in which the restarted deflated generalized 
minimal residual GMRES with the newly constructed spectral 
two-step preconditioning is considered as the iterative method for 
solving the system. Numerical experiments indicate that the 
proposed preconditioning is efficient and can significantly reduce 
the iteration number. 

I. INTRODUCTION 

 The finite element method (FEM) has been applied to the 
analysis of problems in electromagnetics for more than 35 
years. A large number of research papers can be found in the 
literature [1]-[4]. The application of the finite-element method 
to electromagnetic problems often yields a sparse, symmetric, 
and very high-order system of linear algebraic equations. 
These highly sparse large linear equations can be solved using 
efficient solution techniques for sparse matrices based on 
iterative methods. 

The Krylov subspace iterative methods like the generalized 
minimal residual (GMRES) method converges much faster 
than the other methods. The number of iteration required in 
the GMRES method can be controlled to some degree by the 
use of various preconditioning strategies. It is then desirable to 
precondition the coefficient matrix so that the modified system 
is well conditioned and can converge to an exact solution in 
significantly fewer iteration numbers than the original system. 
Many scholars have done a lot of researches on improving the 
efficiency of the iterative solution in the past few decades. The 
incomplete factorizations of the coefficient matrix and its 
block variants are a widely used class of preconditioners [5]- 
[7].  The multigrid preconditioning has also widely been used 
for the FEM. The geometric multigrid (GMG) method is the 
earliest form of multigrid, originally invented for finite 
difference methods [8]. The algebraic multigrid (AMG) 
method [9] was developed to overcome this limitation of 
GMG. It operates more on the level of the matrix than of the 
underlying FE mesh, which need not be nested. 

In most of the cases, a single preconditioning can improve 
the iteration convergence speed to a certain extent. We can get 
more obvious convergence improvements when combining 
different preconditionings. In this paper, we apply the 

auxiliary space preconditioning (ASP), which was proposed in 
[10], as the first-step preconditioning. A spectral 
preconditioning [11]-[13] was applied in a two-step manner 
that attempts to further enhance the quality of the one-step 
preconditioning, resulting in a faster convergence rate. 

This paper is organized as follows. SectionⅡ  gives an 
introduction to the two-level spectral preconditioning utilizing 
ASP in detail. Numerical experiments are presented to show 
the efficiency of the spectral two-step preconditioning in 
SectionⅢ. SectionⅣ gives some conclusions and comments. 
 

II. HHEORY 

A. The Auxiliary Space Preconditioning 
We consider solving a large sparse linear system  

Ax b=                                               (1) 
With n nA C ×∈  , b, nx C∈ , which arises from finite-

element discretization of the Helmholtz boundary value 
problems, where A is complex and symmetric and x is a 
column vector of the unknown values of E on the element 
edges. 

The auxiliary space preconditioner is an approximate 
inverse of A , used to improve the convergence of an iterative 
solution to Ax=b using a Krylov method. Let V be the space 
spanned by the lowest order edge element basis functions on a 
tetrahedral mesh. There is an associated space N of piecewise 
linear, scalar functions on the same mesh and it is well known 
that N∇   is a subspace of [15]. We also need the space of 
vector “nodal” functions, 3N  . These are vector functions that, 
unlike edge basis functions, are both normally and tangentially 
continuous from one element to the next and are fully first-
order in each element. 

These spaces are linked by the following result [16]: for any  
E V∈ there exists 3u N∈  and Nϕ ∈  such that: 

E E us ϕ= + Π + ∇                                   (2) 
Where Es   is a “small” component in V. This suggests that 

it might be possible to solve the problem (1) approximately by 
solving related problems on the auxiliary spaces 3N  and N. 

The operator ∇  becomes the sparse matrix G , which is 
simply the “node-to-edge” mapping matrix with entries of -1 
and 1 per row . To preserve symmetry, we use the transpose, 

TG  , to map backwards, from V to N. 
For 3N  we use the N basis for each Cartesian component of 

the vector and represent 3Nu ∈  by a column vector in which 
nodal values of the x , y and z components occupy 3 



successive blocks. Then the operator Π becomes a sparse 
matrix   which also has a block form: 

[ ]zx yΠ = Π Π Π                      (3) 
Each block has the same dimension and sparsity pattern as 

G, i.e., two nonzero entries per row. It can be shown that the 
two nonzero values for row are identical, and, for xΠ  , are 

equal to  
1( )
2

Gx iC   , where Cx  is a vector containing the x 

coordinates of the nodes; similarly for yΠ   and zΠ  . We use  

TΠ to map backwards, from V to  3N . 
None of these approximations on its own is very effective, 

but the following combined approach might be better: 
1 ( ) ( )

, ,
T TA r R A DR A r B r GB G rni i if b i x y z

− ≅ + ∏ ∏ +∑
=

(4) 

Where 1 1( ) ( ) , ( ) ( )R A D L R A D Uf b
− −+ = + ,

TA G AGn , TA Ax x x∏ ∏ , TA Ay y y∏ ∏ ,

TA Az z z∏ ∏ , We call the approximate inverses of these 
four matrices  Bn , Bx  , By  and Bz  , respectively. D is the 
diagonal part of A, L and U are the strict lower and upper 
triangular parts of A. 

A W-cycle has been used. Omitting the “Residual update” 
lines for brevity, this is: 

Backward GS:  ( )x R A rbΔ ←  

Auxiliary spaces:   , ,
T Tx B r GB G ri x y z ni i iΔ ← Π Π +∑ =  

Backward GS:  ( )x R A rbΔ ←  

Auxiliary spaces:  , ,
T Tx B r GB G ri x y z ni i iΔ ← Π Π +∑ =  

Forward GS:  ( )x R A rfΔ ←  

Auxiliary spaces:  , ,
T Tx B r GB G ri x y z ni i iΔ ← Π Π +∑ =  

Forward GS:  ( )x R A rfΔ ←  

The approximate inverses of A defined by the W-cycle 
algorithms is the auxiliary space preconditioner considered in 
this paper. 

B. The Spectral Low Rank Preconditioning 
Although the ASP described above is very effective as 

shown in [10], the construction of it is inherently local. When 
the exact inverse of the original matrix is globally coupled, 
this lack of global information may have a severe impact on 
the quality of the preconditioner. We can get more obvious 
convergence improvements if recovering global information. 
In this case, some suitable mechanism has to be considered to 
recover global information. 

We firstly let the most of eigenvalues of the system 
concentrate on the unit 1 by using the ASP, which eliminates 
the high frequency component of iteration process and 
accelerates the iteration convergence speed. A spectral 

preconditioner proposed in [14] can be introduced and used in 
a two-step way for the above ASP preconditioned system. The 
purpose here is to recover global information by removing the 
effect of some smallest eigenvalues in magnitude in the 
auxiliary space preconditioned matrix, which potentially can 
slow down the convergence of Krylov solvers. 

Suppose  1 2, ,......, nλ λ λ  be the eigenvalues of the ASP 
preconditioned matrix 1AM   from small to large, U be a set of 
eigenvectors of dimension k associated with the smallest 
eigenvalues of the ASP preconditioned matrix  1AM . 

Define the second spectral preconditioner as: 

2 (1/ ) HM I U T I Un n kλ= + −              (5) 

Where 1( )HT U M Z U=  , In and Ik are unit matrix of 

dimension N and K respectively, and  
, ,......, , ,......1 2 n n nk kλ λ λ λ λ+ +  are the eigenvalues of the 

coefficient matrix 2 1M M A  . 
From the above analysis, we can convert the K smallest 

eigenvalues of the coefficient matrix 1M A  ’s characteristic 
spectrum which is based on ASP preconditioner to K 
arithmetic numbers whose values are nλ  . This process can 
eliminate negative influences of the K smallest eigenvalues. 
Combining the second preconditioning with the previously 
preconditioning in a two-step manner, a new two-step 
preconditioning is derived and has the form of: 

2 1 2 1M M Ax M M b=                          (6) 
Supposing that 1M is a preconditioner of A, 2M is a 

preconditioner of 1M A . Therefore, a new two-level spectral 
preconditioning of multilevel fast multipole method is 
presented, which is a combination of an ASP and a spectral 
preconditioner, as follows: 

(1) Firstly, construct the auxiliary space preconditioner 1M    
using the matrix element of the matrix A, and then solve the K 
smallest eigenvalues of the linear equations (1) after the 
preconditioner  1M  by GMRES-DR iterative algorithm.  

(2) Secondly, construct the spectrum preconditioner  
(1/ )2

HM I U T I Un n kλ= + −  using the information of 

eigenvectors. 
(3) Solve the linear equations (6) by the two-step 

preconditioner iteration. 

III. NUMERICAL RESULTS 

Firstly, scattering by a dielectric sphere with radius of 60 
mm is considered to show the correctness of the proposed 
method. There are 108331 unknowns after discretization. The 
incident plane wave direction is fixed at 0 , 0inc incθ φ° °= =  , 
the frequency is 1GHz， and the scattering angle is fixed at 

0 180 , 90s sθ φ° ° °= − =  . The dielectric constant is 02rε ε=  . 
Locally-conformal PML is used in this test.  

As shown in Fig.1, the comparison is made for the bistatic 
RCS of vertical polarization. It can be found that there is an 
excellent agreement between them and this demonstrates the 



validation of the proposed algorithm. The convergence history 
is given in Fig.2. 
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Figure 1.  Bistatic RCS of the dielectric sphere 
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Figure 2. Convergence history of GMRES algorithms for the dielectric sphere 

 
The second example is an analysis of a three-dimensional 

(3-D) discontinuity of a waveguide partially filled with a 
dielectric, which is shown in Fig.3.The rectangular waveguide 
has a width of a = 2 and height of b = 1; the inserted dielectric 
material slab has dimensions c = 0.888, d = 0.399, and w = 0.8; 
and the dielectric constant 06rε ε= . In this edge-FEM three-
dimensional simulation, in order to obtain the reflection 
coefficient, one block of perfectly matched layer (PML) is 
placed at the waveguide output to simulate the matched output 
load. The use of PML in computational domains significantly 
deteriorates the condition number of the resulting FEM system. 
A total of 39817 unknown edges are to be solved in a large, 
sparse matrix equation. The convergence history at 9GHz is 
given in Fig.4. It can be found that when compared with the 
ASP preconditioned method, the two-step spectral 
preconditioned method decreases the number of iterations by a 
factor of 2.67. Larger improvements can also be found when 

compared with the GMRES method without preconditioning 
in terms of iterations. 
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Figure3. Configuration of a dielectric partially filled rectangular waveguide 
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 Figure 4. Convergence history of GMRES algorithms for the waveguide 
 

IV. CONCLUSION 

In this paper, a two-level spectral preconditioning utilizing 
ASP is proposed for FEM. The key of the paper is to combine 
the spectral preconditioner and the auxiliary space 
preconditioner in the two-step manner, resulting in faster 
convergence for GMRES iterations. The right-hand side 
system is solved by use of the GMRES-DR algorithm and the 
approximate smallest eigenvector information is obtained for 
constructing the spectral preconditioner for the system. 
Numerical experiments are performed and comparisons are 
made in the numerical results. It can be found that the 
proposed two-level spectral preconditioner utilizing ASP is 
more efficient and can significantly reduce the overall 
simulation time. 
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