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Abstract—This paper studies an insensitive diffe-
rential evolution and its application to exploring the
maximum power point in photovoltaic systems. De-
pending on the insolation, the maximum power point
varies and complicated multi-peak is generated. Our
algorithm has a key parameter that controls particles
insensitivity that can be effective to prevent trapping
of particles. Performing basic numerical experiments,
the algorithm efficiency is investigated.

1. Introduction

This paper studies the insensitive differential evolu-
tion (IDE) and its application to exploring the max-
imum power point in photovoltaic systems. Outline
and background of DE:

Figure 1: Equivalent circuit of a solar cell

Figure 2: The paralleled PV system

The Difference Evolution (DE [1][2]) is an optimiza-
tion technique. Each particle is a potential solution.
Applying crossover and mutation, the particle location
is updated and the particle try to find the optima.
The DE is simple in comcept, easy to implement and
have been applied to various emgineering systems: sig-
nal processing, power electronics, and communication
systems[3][4].

This paper presents the IDE that can be insensitive
depending on position of particles. In the IE, each
particle has a territory. If the location of a particles
is included in the territory, the particles movement is
reinforced.

We apply the IDE to exploying problems of
the maximum power point(MPP) in photovoltaic
systems[5][6][7]. The MPP tracking is an important
technique in renewable energe supply system. Depen-
ding on the isolation, the power characteristic varies
and may become complicated multi-peek shapes.

If we apply standard DEs, it is hard to explore the
MPP in the multi-peek problem becouse the particles
often trapped into local peeks. The insensitivity of the
IDE can be effective for escape from the trap. Perfor-
ming basic numerical experiment for typical example,
efficiency of the IDE is confirmed.

2. Objective Problem

Here we define the objective function. Figure 1
shows equivalent circuit of a solar cell. For simplicity,
Rs and Rsh are ignored. The ciruit is characteriste-
ced by the parameters: Iph=photo-generated current.
Irs=cell reverse saturation current. q=elementary
charge. k=boltzman constant. A=diode ideality fac-
tor. The V − I characteristics describesd by

I ≡ f(V ) ≡ Iph − Irs

(
exp

(
qV

kATns

)
− 1

)
(1)

We consider a multiple solararray system as shown
in Fig.2. It includes two sets of three solar cells con-
nected in series. They are controlled by single MPPT
controller.

The PV characteristics is shown in Fig.3. Note that
the cells have different isolation. The power characte-
ristics is given by

F (V1, V2) ≡ V1f(V1) + V2f(V2) (2)
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Figure 3: Objective function

Figure 4 show the contour map. The function F is
the fitness of the IDE in this paper.

3. Insensitive Differential Evolution

The IDE operation is based on the location of par-
ticles and the fitness function. Let xn

i be the i−th
particle position at step n. We use plural particles in
this paper. However, note that MPPT controller has
single operating point corresponding single particle. It
is hard to use plural operating point in practical sy-
stem. Applying virtual particle technique is [8], the
single particle can be translated in plural particles.

Step 1 (Initialization): Let step n = 0. The par-
ticles location X are initialized. The particles location
are set randomly in the search space S0

Step 2 (Mutation): The Gbest nn
B is selected.

Two vecters xn
x1 and xn

x2 selected randomly. offspring

is genelated by the follwing:

xnew
i = xn

B + S(xn
p1 − xn

p2) (3)

where S is scaling parameter.
Step 3 (Crossover): Applying crossover to the off-

spring and the parent xn
i , we obtain the next offspring

xnewı. where i = 1 ∼ N . The offspring is inherited
with probability CR. The CR is referred to as the
crossover rate.

Step 4 (Survival):

Figure 4: Neighbour-dependent insensiivity

The ditance of particle movement is measured and is
reinforced as illustrated in fig.3. The offspring location
is updated as the follwing:

xnew
i = xnew

i + α(xnew
i − xn−1

i )
if (xnew

ix
− xn−1

ix
)2 + (xnew

iy
− xn−1

iy
)2 ≤ β2 (4)

where α is the scattering rate.β is the territory ra-
dius. The location is measured by the Euclidean dis-
tance.

The parent xn
i is updated as the follwing:

f(xn
i ) < f(xnew

i ) then xn
i = xnew

i

otherwise : xn
i = xn−1

i

(5)

Step 5 (Termination Condition): Let n=n+1,
go to Step2 and repeat until the time limit nmax.

4. Numerical Experiments

In order to confirm the algorithm efficiency, we have
performed basic numerical experiment. The scattering
rate α is selected as a control parameter. For sinplicity,
the other parameters are fixed: scaling parameter S =
0.6, crossover rate CR = 0.7, the number of particles
N = 10, time limit nmax = 30 scattering rate α = 0.35
and territory radius β = 0.7. In order to evolute the
performance, we introduce two measures:

SR:The rate of successful runs where the Gbest ex-
ceed 2.86[w](The MPP = 2.86).

#ITE: The average number of iterations in success-
ful runs.
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Figures 4 (a) and (b) show typical examples of
snapshot in the search process of IDE and DE, re-
spectively. Figures 5 (a) and (b) show search process
of IDE and DE, respectively. In the IDE, the particles
are distributed and can find the MPP. In the DE, the
particles tend to be trapped into the local peeks, and
hard to approach the MPP. Figures 7 (a) and (b) show
the SR and #ITE for α. As α increases the particles
tend not to be trapped into local peak and the seach
speed becomes slow. β = 0.7 gives the highest SR.
There exists a trade-off between the SR and #ITE as
expected.

Figure 5: Typical examples of expliring the MPP. (a)
A successful run of IDE (b) A failed run of DE The
red circle is the gbest

5. Conclusions

Territory-dependent IDE and application to MPP
search are studied in this papper. Exploring basic plo-
blem, we have comfirmed that the diversity of particles

Figure 6: Exploring process (a) A successful run of
IDE (b) A failed run of DE

can be controlled and the MPP can be found success-
fully. Future problems include analysis of relation be-
tween effect and various parameters.
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