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Abstract—Experiments on quantum well and recently
quantum dot VCSELs have shown that the increase of in-
jection current may lead to a transition from a linearly
polarized light emission at threshold to a region of non-
linear dynamics (self-pulsing) accompanying polarization
switching. However these experiments brought different
conclusions on the frequency of self-pulsation: the polar-
ization dynamics occurred on a nanosecond time-scale that
related either to the birefringence induced frequency split-
ting or to the relaxation oscillation frequency. With the
use of advanced continuation methods applied to the well-
known spin-flip (SFM) model, we bring now new light into
the bifurcations explaining deterministic self-pulsing and
deterministic polarization chaos. We are then able not only
to reconcile these a priori contradicting experiments and to
interpret experimental results as resulting from polarization
chaos.

1. Introduction

Vertical-cavity surface-emitting lasers (VCSELs) are to-
day replacing conventional Edge-emitting lasers (EELs) in
numerous applications. However in these structures the
polarization selection is much weaker than in EELs, and
in many experiments one typically observes polarization
instabilities and even a particularly striking feature called
polarization switching (PS) [1]. Although a VCSEL gen-
erally starts emitting in a linearly polarized (LP) mode, an
increase of the injection current can induce a switching to
the orthogonal LP mode. As a result of cavity birefrin-
gence these two modes are frequency detuned, we refer to
them as the low (LF) and high (HF) frequency linear po-
larization. A switching from HF to LF (resp. LF to HF)
is identified as a type I PS (resp. type II PS). Typically PS
is accompanied by noise driven bistable mode hopping [2],
but two experiments have shown more complex dynamical
transition accompanying PSs. In these cases, the increase
of current leads to elliptically polarized states and complex
dynamical self-pulsing occurring at nanosecond time-scale
[3, 4]. The frequency of these dynamics relate either to the
birefringence induced frequency [3] or to the relaxation os-
cillation frequency [4]. The bifurcations underlying these
dynamical transitions and what determines the frequencies
of the self-pulsing dynamics remain issues to be clarified.

A dynamical approach of these polarization instabili-
ties in VCSEL has been proposed by San Miguel et al[5],
the so-called San Miguel-Feng-Moloney (SFM) or spin-
flip model. A four-level model is considered, account-
ing for two separated processes for the left (-) and right
(+) circularly polarized emission with two separated car-
rier reservoir but coupled through the complex spin-flip
processes equilibrating the carrier population. The SFM
steady-states have been extensively studied by means of
asymptotic methods or direct numerical integration [6, 7]
and it appears that SFM allows for linearly and elliptically
polarized states. The stability analysis of these steady-
states revealed that both type I and type II PSs are possible
in the framework of SFM. Despite these analysis, there is,
to our best knowledge, no investigation of the higher order
bifurcations that may lead to complex nonlinear dynamics.
In particular there is no study of the frequencies of the po-
larization dynamics and how they may depend on the laser
parameters.

In this contribution, by means of direct numerical in-
tegration and advanced continuation techniques, we pro-
vide a valuable insight of the bifurcation scenarios lead-
ing to complex nonlinear dynamics in the framework of
SFM. Continuation techniques allow to follow numerical
solution in the phase-space regardless of their stability and
therefore to reveal the underlying mechanism and bifurca-
tion sequences creating the dynamical states. Of particu-
lar interest is the Hopf bifurcations analysis which gives
the fundamental frequency of the emerging periodic solu-
tion. Therefore we make an in-depth bifurcation analysis
of the scenario leading to self-pulsating dynamics and we
demonstrate that the frequency of these dynamics is in fact
a bifurcation problem: depending on the parameters, the
frequency can be either close to the birefringence induced
frequency or to the relaxation oscillation frequency. Thus
our work reconciles both experiments [3, 4] but also brings
new details to our theoretical understanding of SFM.

2. Rate equation of the system: The San Miguel-Feng-
Moloney approach

The San Miguel-Feng-Moloney model (SFM) or spin-
flip model described by San Miguel et al [5], considers two
slowly varying enveloppes for the left E− = R−eiψ− and

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 195 -



right E+ = R+eiψ+ circularly polarized emissions with two
distinct carrier populations D− and D+. Yet the population
carrier is described by N = D+ + D− the total carrier pop-
ulation and n = D+ − D− the population difference. For
simplicity and to allow for a numerical treatment, we con-
sider the phase difference Φ = ψ+ − ψ−, see [6]. The SFM
equation set can be written as follows:

dR±
dt

= κ(N + n − 1)R± − (γacos(Φ)±γpsin(Φ))R∓ (1)

dΦ

dt
= 2καn − (

R−
R+

−
R+

R−
)γpcos(Φ) (2)

+(
R+

R−
+

R+

R−
)γasin(Φ) (3)

dN
dt

= −γ[N − µ + (N + n)R2
+ + (N − n)R2

−] (4)

dn
dt

= −γsn − γ[(N + n)R2
+ − (N − n)R2

−] (5)

κ is the decay rate of the electric field in the cavity, α is the
linewidth enhancement factor, µ is the normalized injec-
tion current. γ is the decay rate of the total carrier number
and γs is the decay rate of the spin-flip relaxation processes
that equilibrates the spin orientation of both carrier reser-
voirs. The phase and amplitude anisotropies are noted γp

and γa. We applied a chosen frequency shift of ω0 = κα to
the original set of equation which lead to a zero emission
frequency for E± at threshold for γa = 0 and γp = 0; thus
ω0 is our reference frequency. In this contribution, unless
stated otherwise, we will use the following parameter val-
ues: γa = −0.7 ns−1, γs = 100 ns−1, γ = 1, κ = 600 ns−1,
α = 3. The system is symmetric in terms of birefringence
γp for the right and left circularly polarized light emissions,
hence we will only use γp > 0.

3. Nonlinear dynamics in a type II polarization switch-
ing

In this section we first investigate the nonlinear dynam-
ics that accompanies a type II polarization switching, i.e.
a configuration similar to the experiment of Ref. [3]. We
use the following parameters γa = −0.7 and γp = 4, and
we find a complete scenario of type II switching by vary-
ing the normalized injection current in µ ∈ [1, 2]. Figure 1
shows a bifurcation diagram obtained by continuation of
the SFM equations, with the use of the Matlab package
DDE-BIFTOOL. We plot in panel (a) the maximum and
minimum of A = R2

+/(µ−1) versus the normalized injection
current µ. Although the representation of figure 1-(a) seems
complex, the two linearly polarized states correspond to the
same line A = 1/2 (but with different phases) which allow
us to identify easily the other polarization states.In figure
1-(b) we plot the frequency of the periodic solutions ver-
sus the current µ; we also add the birefringence induced
splitting frequency Fsplit (black dashed curve) and the re-
laxation oscillation frequency FRO (red dashed curve). The
panel (b) therefore will tell us more about the frequency
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Figure 1: (color online) Continuation results for a type
II switching. the stable (unstable) part of the branches
are in thick (thin) lines. (a) Maximum and minimum of
A = R2

+/(µ−1) versus normalized injection current (b) Fre-
quency of the periodic solutions versus normalized injec-
tion current. The X and Y-LPs are in black and red respec-
tively and the EP states are in blue. The periodic solution
created on the EP states is in green (a similar branch is
created at the lower hopf bifurcation but not represented)
while the one created on the Y-LP state is in orange. Dia-
monds are hopf, squares are saddle-node and crosses are
period doubling bifurcations. On diagram (b) the black
dashed line gives Fsplit and the red one FRO which is not
displayed for µ > 1.4.

of the emerging self-pulsating dynamics and further sec-
ondary bifurcations, hence comparing with the conclusions
from the two experiments [3, 4].

To illustrate the observed nonlinear dynamics, we show
in figure 2 Fast Fourrier Transform (FFT) optical spectra,
phase space projection in the plane (Re(EX), Re(EY )) and
intensity time-traces for samples at six different currents.

The laser starts emitting in X-LP state with Ey = 0,
since the choice of the parameters leads to a smaller lasing
threshold for the X-LP than for the Y-LP mode. As shown
in figure 2-(a.1) the lasing frequency is slightly lower than
ω0 and the laser emits in the LF mode. At µ = 1.24
the steady-state is destabilized by a pitchfork bifurcation,
which can be clearly identified on figure 1, creating the
two EP states. Figures 2-(b.1) and (b.2) show an ellipti-
cally polarized lasing mode with locking of the frequen-
cies of the X- and Y-polarized modes. When increasing
the injection current further and starting from µ = 1.36,
the EP states are both destabilized by a Hopf bifurcation
creating two symmetrical limit cycles leading the system
to a time-periodic self-pulsation (diamond symbol in fig-
ure 1). Both EP are given (blue line) but only one peri-
odic solution emerging from the Hopf bifurcation on the EP
branch is displayed (green line). According to the continu-
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Figure 2: color online) Detailed characteristic of dynam-
ical states for (a) µ = 1.223, (b) µ = 1.323, (c) µ =

1.381, (d) µ = 1.416, (e) µ = 1.549 and (f) µ = 1.650.
Left: optical spectrum, Middle: phase space projection in
(Re(EX), Re(EY )) plane, Right: polarization-resolved time.
Red (black) is for the X (Y) linear polarization axis.

ation results of figure 1 (b) the frequency of the emerging
time-periodic dynamics is about 1.5 GHz which is close
to Fsplit and clearly less than FRO (∼ 3 GHz in this injec-
tion current range). The limit cycle dynamics born on the
EP solutions gets destabilized by a saddle-node bifurcation
on limit cycle for a larger value of the injection current:
µ = 1.404 (square symbol in figure 1). Figure 2 (c.1)-(c.3)
shows an example of such limit cycle dynamics with an
optical spectrum being centered at ω0 and with side-bands
at harmonics of the fundamental frequency (∼ Fsplit). The
time-traces of the X- and Y-LP mode dynamics show anti-
correlated dynamics of square-like waveforms. For a cur-
rent value larger than the saddle-node bifurcation on limit
cycle, the laser exhibits a chaotic dynamics that coexists
with a stable steady-state solution with Y-linear polariza-
tion. The region of chaos extends up to µ ∼ 1.47, which
corresponds to a saddle-node bifurcation on a time-periodic
solution emerging from a subcritical Hopf bifurcation on
the Y-LP mode (Hopf: diamond symbol on the red branch
and saddle-node: square symbol on the orange branch in
figure 1). The optical spectrum for the chaotic time-series
is given in figure 2-(d.1) and it shows a broad spectrum with
however spectral signatures at frequencies close to the one
of now unstable limit cycle dynamics (green thin line on
figure 1 around 1 GHz) and close to FRO. The polarization
resolved time-series of figure 2-(c.3) and (d.3) are strongly

anti-correlated. As mentioned earlier, when increasing the
current above µ = 1.47 the system reaches a new periodic
solution born on the Y-LP steady-state branch from a sub-
critical Hopf bifurcation. An example of such dynamics
is shown in Figure 2-(e.1) and (e.3). The laser exhibits a
two mode self-pulsating dynamics. The optical spectra of
the X and Y-LP modes show different central frequencies
being separated by Fsplit and with side-bands at frequen-
cies being multiples of the frequency of the limit cycle dy-
namics, as determined by the continuation method (orange
curve in figure 1). Interestingly, the polarization resolved
time-series are not anticorrelated anymore, but the modes
emit pulses in phase, see figure 2-(e.3). This limit cycle dy-
namics is stable up to a current value of about µ = 1.638,
which corresponds to a second saddle-node bifurcation on
the limit cycle solution. For larger current values the laser
is left with a single attractor being a steady-state dynamics
with Y-linear polarization, see Figure 2-(f.1)-(f.3).
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Figure 3: (color online) Continuation results for γa = −0.7
and γp = 25: the stable (unstable) part of the branches are
in thick (thin) lines. The caption is similar to the one of
figure 1. We find a large region without any stable states
and where the laser exhibits complex nonlinear dynamics.

4. Nonlinear dynamics without polarization switching

In the previous section we made a detail analysis of a
type II PS which is in good qualitative agreement with the
experiment of Sondermann et al[3]. Experimentally the
laser was found to go from the low to the high frequency
state through a complex and dynamical transition: 1/ ex-
periencing an elliptically polarized state, 2/ exhibiting self-
pulsating dynamics at the birefringence induced frequency,
3/ emitting with a broad optical spectrum with two main
peaks and multiple sidebands. In addition the reported ex-
perimental time-traces are close to the one described in fig-
ure 2-(d.3) even if correlation and DC-information are not
available in the reported observations.
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In this section we simulate another configuration similar
to the experimental report of Olejniczak et al[4] describing
a destabilization of the linearly polarized state without po-
larization switching; in particular a self-pulsing dynamic at
the relaxation oscillation frequency is reported.

This situation is well reproduced when considering the
following values for the linear cavity anisotropies: γa =

−0.7 and γp = 25. The continuation results are displayed
in figure 3 where we find a bifurcation sequence similar to
the one for type II PS. However a chaotic region appears
to be much larger and the periodic solution born on the
Y-LP is stable only at very high injection current (orange
line on figure 3). As shown in figure 3-(b) (the thick green
line), the destabilization of the EP states leads the system
to self-pulsing dynamics at the relaxation oscillation fre-
quency FRO. For higher current we only find complex non-
linear dynamics; a typical optical spectrum is given in fig-
ure 4. We find a two-mode emission, one on each linear
polarization, with sidebands at FRO; the splitting frequency
between the two modes is given by the frequency of the
unstable periodic solution born on Y-LP (orange line on
figure 3). A similar optical spectrum is reported in figure 6
of Ref. [4] where the splitting frequency of the two-modes
is referred to as the “effective birefringence”.
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Figure 4: (color online) Optical spectrum for µ ∼ 6.2 for
the same parameters as in figure 3. We find a two-mode
emission: the frequency splitting between the two mode
is given by the unstable periodic solution born on Y-LP
branch F = 9.94 GHz. We also find sidebands at the relax-
ation oscillation frequency FRO = 12.2 GHz.

5. Conclusions

In summary, the use of advanced continuation tech-
niques allow us to follow for the first time the self-pulsating
dynamics and secondary bifurcations leading to polariza-
tion chaos in free-running VCSELs. The frequency of the
self-pulsating dynamics can be either close to the bire-

fringence frequency or to the laser relaxation oscillation
frequency, depending on the values of the linear cavity
anisotropies. This theoretical work reconciles two appar-
ently contradicting experiments [3, 4].
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