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Abstract—This paper studies a fission-and-
recombination particle swarm optimizer and its appli-
cation. At this algorithm, the particles have lifetime.
Lifetime enables self-organization and flexible search.
We examine performance of FRPSO by comparing it
with standard PSO.

1. Introduction

The particle swarm optimizer (PSO) is a
population-based optimization method inspired
by flocking behavior of living beings [1]. The particles
correspond to potential solutions and search some ob-
jective solution based on inter-particle communication
in a swarm of the particles. The PSO is a simple in
concept, fast and has been applied to various practi-
cal/potential engineering applications such as design
of circuits and neural networks [2]-[4]. However,
in standard PSO, particles tend to be trapped into
local-minima depending on the problems. In order to
escape the trapping, diversity of particle swarm and
variation of particle movement are required [5]-[10].

This paper presents a fission-and-recombination
particle swarm optimizer (FRPSO). The FRPSO has
self-organizing function that can control the number
of particles: each particle has the lifetime that con-
trols the number of particles. If particle movement
is stagnated, then the lifetime decreases. When the
lifetime is expired, the particle disappears and a new
sub-swarm is generated: the number of particles incre-
ases and the particle topology changes. This growing
structure of the sub-swarms aims at escape from local
minima. The plural sub-swarms operate in parallel. In
the sub-swarm, if the lifetime of some particle is expi-
red, the particle disappears: the number of particles
decreases in total.

We apply this algorithm to several benchmark
functions. Performing basic numerical experiments,
we have confirmed that, depending on the problems,
the number and topology of the particles can vary flex-
ibly. As compared with standard PSOs, our algorithm
can realize higher success rate and lower number of
iteration.

2. Algorithm

First, we introduce a standard ring type PSO
(RPSO). The RPSO is one of the standard PSO. In the

RPSO, the particle exchanges information for only the
neighborhood particles. There are the following two
kinds of information. The Pbest is own best position
in the self-search process. The Lbest is best position
in the neighborhood particles and oneself. Let xP and
xL be the posotion of the Pbest and Lbest respecti-
vely. The positions of Pbest and Lbest are decided by
fitness. The evaluate of fitness is done by substituting
the position x for function f(x). The characteristic
of the ring type uniting is to be able to oppose the
localized solution though it is simple.

Step 1 (Initialization): Let search step t = 0. The
number of particle is N . The particle velocity vi(0)
is initialized to zeros and position xi(0) is randomly
initialized in the search space (i = 1 · · ·N). After that
evaluate the fitness and set xP

i (0),x
L
i (0), t ← t + 1.

Step 2 (State Update): Update vi and xi at all
particles.

xi(t)← xi(t− 1) + vi(t− 1)
vi(t)← ωvi(t− 1)

+ρ1
{
xP
i (t− 1)− xi(t− 1)

}
+ρ2

{
xL
i (t− 1)− xi(t− 1)

} (1)

where ω is inertia weight. In general, ω = 0.7. ρ1 and
ρ2 are random number in the range of [0, 1.4].
Step 3 (Information Update): Calculate evalua-
tion of the fitness at each particle position and update
of the Pbest and Lbest.

xP
i (t)← xi(t) if
f(xi(t)) < f(xP

i (t− 1))
xL
i (t)← xP

i−1i(t),x
P
i (t),x

P
i+1(t) if

f(xP
i−1(t)) < f(xL

i (t− 1))
f(xP

i (t)) < f(xL
i (t− 1))

f(xP
i+1(t)) < f(xL

i (t− 1))

(2)

If the condition is not met, Pbest and Lbest keep it
intact.
Step 4 (Fitness Judgment): When best fitness eva-
luation of Lbest became less than the criteria C, finish
the search.
Step 5 (Step Judgment): Let t← t+1, return Step
2 and repeat until t = Tmax.

Next, we define the FRPSO.
Step 1 (Initialization): Let generation step t = 0.
The particle velocity vi,0(0) is initialized to zeros and
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position xi,0(0) is randomly initialized in the search
space (i = 1 · · ·N). Lifetime Li,0 is set to L. After
that evaluate the fitness and set xP

i,0(0),x
L
i,0(0), t ←

t+ 1. There are no sub particles at this step. Step 2
(State Update): Update vi,j and xi,j at each living
particles. Living means that L is not equal to zero.

xi,j(t)← xi,j(t− 1) + vi,j(t− 1)
vi,j(t)← ωvi,j(t− 1)

+ρ1
{
xP
i,j(t− 1)− xi,j(t− 1)

}
+ρ2

{
xL
i,j(t− 1)− xi,j(t− 1)

} (3)

Step 3 (Information Update): Evaluate the each
particle fitness and update Pbest and Lbest based on
xi,j . If Pbest is not update, decrease lifetime -1. Life-
time Li,0 = 0, the particle is dead and cannot be up-
dated. When lifetime of main particle, Li,0, is equal
to 0, go to Step 4. Otherwise, go to Step 5. When
sub particle dies, stop update. If the number of sub
particles is 1, replace the particle as a main particle.
Then, the information succeeds a sub particle. Howe-
ver, initialize only lifetime.
Step 4 (Addition of the particle): Scatter sub par-
ticles with a random number around the main particle
which died at Step3 of this search step. The number
of new sub particles is 3 to J. Dispersion width E is
determined by next equation.

E = Emax × Tmax−t
Tmax

(4)

Next, construct each ring unitting with only sub par-
ticles. This unitting is independent. After that, initia-
lize Pbest and Lbest. Step 5 (Fitness Judgment):
When best fitness evaluation of Lbest became less than
the criteria C, finish the search. Step 6 (Step Judg-
ment): Let t← t+ 1, return Step 2 and repeat until
t = Tmax.

3. Numerical experiments

We apply RPSO and FRPSO to four benchmark
functions.
1)Schwefwl function: This is a multimodal function
and optimum solution exists on the edge of seach
space.

f1(x) =
∑D

d=1−xdsin(|
√
xd|) + 418.98288727D

(5)
where D is number of dimensions (d = 1 · · ·D).
2)Salmon function: This function’s characteristic is
local-minima. These exist on circle line and conse-
cutive.

f2(x) = − cos(2π
√
(
∑D

d=1 x
2
d)) + 0.1

√
(
∑D

d=1 x
2
d) + 1
(6)

3)Griewank function: This is a multimodal function.

f3(x) = 1 +
∑D

d=1
x2
d

4000 −
∏D

d=0(cos(
xd√
d
)) (7)

4)Ridge function:

f4(x) =
∑D

d=1(
∑d

k=1 xk)
2 (8)

We apply RPSO and FRPSO to these four bench-
marks. Results is shown in Figure 1-5. The parameters
are selected after trial-and-errors:

N = 10, J = 10, Tmax = 1000,
C = 1.0, Emax = 256, |x| < 512

(9)

Figures 1 to 3 show the results of the Schwefel
function. Figure 1 shows evolution of the fitness value
and the number of particles. We can see that the fit-
ness is improved as the number of particles increase.
Figure 2 shows time evolution of the fitness averaged
for 1000 trials. In the early stage, the RPSO can de-
crease the fitness faster than the FRPSO. However, at
the time limit Tmax, the FRPSO can realize better fit-
ness value than the RPSO. Figure 3 shows snapshots
of the particles locations. We can see that the parti-
cle’s diversity of the FRPSO is wider than that of the
RPSO.

Figure 4 and 5 show results of the FRPSO in the
four functions. The algorithm performance is evalua-
ted by the SR and the number of iterations (#ITE)
in successful runs. In the Schwefel, Salmon and Ridge
functions, the SR decreases and lifetime L increases.
In the Griewank function, the SR decreases as L in-
creases, however, it increases as L approaches 1000.
The case L = 1000 is almost the same as the standard
PSO without insensitivity. The Griewank function is
unimodal function and the standard PSO can work
efficiently for this function. Roughly speaking, there
exist a trade-off between the SR and #ITE: #ITE in-
creases as SR decreases. For the multimodal functions,
diversity of particles in the FRPSO seems to be work
efficientively.

4. Conclusions

The FRPSO is presented and its capability is inves-
tigated in several benchmarks functions. The lifetime
can work effectively to multimodal function.

Future problems include setting of suitable parame-
ter values, control of particles diversity and applicati-
ons to practical problems.
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Figure 1: Typical example of fitness and the number
of particles on FRPSO

Figure 2: Comparison between FRPSO and RingPSO
on schwefel function

Figure 3: (a), (b), (c) and (d) are snapshot of seaching
process. (e)(f) are overlapped drawing of seaching.
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Figure 4: Lifetime vs SR
Figure 5: Lifetime vs Search step. Over L = 100, we
cannot get the date of t.
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