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Abstract—In this paper we propose the performance
improvement schemes for nonlinear controlled objects
by applying online system identification. Generally,
multi-body mechanical systems have high nonlinearity be-
cause of the influence of gravity, friction, interaction of
joints, and other factors. Therefore, the accuracy of the
Proportional-Integral-Derivative (PID) control is limited.
In contrast, a digital acceleration control (DAC) method
has robustness against modeling errors that are caused by
such nonlinearity. A combined control system of PID and
DAC (PID-DAC) has been proposed in our previous re-
search and the validity of it has been confirmed. How-
ever, the PID-DAC control system cannot compensate for
modeling errors of the inertia matrix or mass change of the
controlled object. To solve this problem, we apply online
system identification algorithm to the PID-DAC. The ef-
fectiveness of the proposed method is investigated through
experiments on a two-link robot manipulator.

1. Introduction

The accuracy of the Proportional-Integral-Derivative
(PID) control widely used by mechanical systems such as
robot manipulators is limited by modeling errors caused
by the influence of gravity, friction, and joint interaction.
In comparison, Digital Acceleration Control [1] (DAC) is
more robust against modeling errors and thus superior to
PID.

DAC requires the information on positioning, velocity
and acceleration to be precise. Velocity and accelera-
tion can be obtained theoretically from positioning, with-
out using sensors. This paper presents simulations and
experimental results obtained using digital differentiator,
ESDS [2, 3]. ESDS is one of the nonlinear filters that is
based on sliding mode technique [4, 5]. By using ESDS,
we can construct DAC system without increasing the num-
ber of sensors. A combined control system of PID and
DAC (PID-DAC) which includes ESDS as a differentiator
has been proposed in our previous research [6, 7]. How-
ever, the PID-DAC control system cannot compensate for
modeling errors of the inertia matrix or mass change of the
controlled object. To solve this problem, we apply an on-
line system identification algorithm to the PID-DAC. We

applied the proposed control system to a 2-link manipula-
tor, and experimentally confirmed the validity of the pro-
posed method. The results confirmed that the PID-DAC
controller with system identification algorithm works as a
nonlinear compensator properly.

2. Brief explanations of PID-DAC and ESDS

This section explains the combined control system of
PID and DAC (PID-DAC) and nonlinear filter ESDS.

2.1. The PID-DAC control system construction

Controlling of the mechanical systems is affected by the
modeling errors. Modeling errors cause reductions in accu-
racy. However, the digital acceleration control (DAC) [1]
is robust to the modeling errors, and this paper presents a
combined control system, the PID-DAC:

τpidac(kT+) = τpidac(kT−)

+M[θ(kT+)]{θ̈d(kT+) − θ̈(kT−)}
+Kpe(t) + Kdė(t) + Ki

∫ t

0
e(α)dα (1)

Equation (1) determines the input torque of the PID-DAC
for controlling the angle of robot manipulator. Here,
τpidac(kT+) is an input torque at the time t = kT+,
τpidac(kT−) is an input torque at the time t = kT− (the mo-
ment immediately before t = kT+), M is inertia matrix, and
e(t) is angular error. Kp, Ki, and Kd are PID parameters.

2.2. Implementation of PID-DAC

DAC is an effective control method, however, additional
sensors are needed to measure velocity and acceleration.
Therefore, a system that Estimates the Smoothed and Dif-
ferential values by a Sliding mode (ESDS) [2, 3] is em-
ployed to estimate the velocity and acceleration from rota-
tional angle. In this subsection, the actual implementation
of a differential estimator is described. The theorem for
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Figure 1: View of estimator
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Figure 2: Block diagram of the PID-DAC
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Figure 3: Model of 2-link vertical manipulator

system configuration is described in [2, 3], and the proof of
the theorem is described in [2].

Our proposed system shown in Fig. 1 estimates the
smoothed value x1 and the differential value x2 from the
input signal y. The actual implementation is as follows:

{
ẋ1 = x2

ẋ2 = −UR2sat{(S (x1 − y) + x2)/φ} (2)

where UR2, S and φ are the design parameters, and the
sat() indicates the saturation function and is defined by the
following equation.

sat(σ/φ) =

{
σ/φ |σ| < φ
sign(σ) |σ| ≥ φ (3)

Figure 2 shows the block diagram of the PID-DAC, and
it utilizes the ESDS as a differential estimator. In this fig-
ure, θ̇e indicates the differential value of the encoder by
using ESDS, and θ̈e indicates a second-order differential
value by using ESDS twice. A low pass filter (LPF) is
applied to the input torque in order to eliminate high fre-
quency elements.

3. Apply online-system-identification to the PID-DAC

3.1. Modeling of controlled object

Figure 3 shows model of a 2-link vertical manipulator,
where m is the mass of the link, l is the length of the link,
lG is the length between the joints and center of gravity of
the link, IG is the moment of inertia about the center of
gravity, Cv is the viscous damping coefficient of a joint, Cc

is the coulomb friction coefficient of the joint, θ is the joint
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Figure 4: Combined control system of PID and DAC with
system identification method

angle, and τ is the input torque to the joint. Here, suffix 1
and 2 shows first and second links respectively. mp is the
mass of the payload, mj2 is the mass of the second joint,
and g is gravity force. The following equation is derived
using the Lagrange equation:[

J1 + J2 + J3 cos θ2 J2 +
1
2 J3 cos θ2

J2 +
1
2 J3 cos θ2 J2

] [
θ̈1
θ̈2

]

+

[ − 1
2 J3θ̇2(2θ̇1 + θ̇2) sin θ2

1
2 J3θ̇

2
1 sin θ2

]
+

[
J4θ̇1 + J5sign(θ̇1)
J6θ̇2 + J7sign(θ̇2)

]

+

[
J8 cos θ1 + J9 cos(θ1 + θ2)

J9 cos(θ1 + θ2)

]
=

[
τ1

τ2

]
(4)

where the parameters from J1 to J9 are as follows:
J1 = m1l2G1 + (m2 + mj2 + mp) l21 + IG1,

J2 = m2l2G2 + mpl22 + IG2,

J3 = 2m2l1lG2 + 2mpl1l2,

J4 = Cv1, J5 = Cc1, J6 = Cv2, J7 = Cc2,

J8 =
(
m1lG1 + mj2l1 + m2l1 + mpl1

)
g,

J9 =
(
m2lG2 + mpl2

)
g.

Equation (4) is rewritten by using the state vectors θ and τ:

M(θ)θ̈ + h(θ, θ̇) = τ, (5)

where θ = [θ1 θ2]T , τ = [τ1 τ2]T and M is the inertia
matrix defined as follows:

M(θ) =

[
J1 + J2 + J3 cos θ2 J2 +

1
2 J3 cos θ2

J2 +
1
2 J3 cos θ2 J2

]
(6)

3.2. Online-system-identification

PID-DAC control system has robustness against model-
ing errors that are caused by gravity, friction, interaction of
joints, and other factors. However, control performance of
PID-DAC would deteriorate if there is a modeling error in
the inertia matrix. For example, the inertia matrix can be
easily changed by changing the payload of the manipula-
tor. This is a big problem. To solve this problem, we ap-
ply online system identification algorithm to the PID-DAC
control system, and we perform online estimation of the in-
ertia matrix. The physical parameters J1, J2, · · · , J9 are cal-
culated by using the iterative least squares technique. At
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Table 1: Specification of manipulator

First link Second link
m1 0.112 kg m2 0.150 kg
mj2 0.410 kg mp 0.100 kg
l1 0.14 m l2 0.150 m

lG1 0.0625 m lG2 0.0750 m
IG1 5.56 × 10−4 kg·m2 IG2 2.81 × 10−4 kg·m2

Cv1 1.22 × 10−4 N·m·s Cv2 1.22 × 10−4 N·m·s
Cc1 1.20 × 10−2 N·m Cc2 1.20 × 10−2 N·m

resolution 2π/4000 resolution 2π/4000

Table 2: Parameters of the control system

UR2
1 1500 UR2

2 1500
S 1 160 S 2 150
φ1 2 φ2 20
Kp diag(1.5, 1.5) Ki diag(0.05, 0.05)
Kd diag(1.5, 1.5)
σ0 0 P0 diag(100, . . . , 100)

the beginning, Eq. (4) is rewritten as Λσ = τ, where,

Λ =

[
λ11 λ12 λ13 · · · λ19

λ21 λ22 λ23 · · · λ29

]
, (7)

σ =
[

J1 J2 · · · J9

]T
, (8)

and each component of the matrix Λ are as follows:

λ16 = λ17 = λ21 = λ24 = λ25 = λ28 = 0,

λ11 = θ̈1, λ12 = λ22 = θ̈1 + θ̈2,

λ14 = θ̇1, λ15 = sign(θ̇1),

λ26 = θ̇2, λ27 = sign(θ̇2),

λ18 = cos(θ1), λ19 = λ29 = cos(θ1 + θ2),

λ13 = cos θ2 · θ̈1 + 1
2

cos θ2 · θ̈2 − 1
2
θ̇2(2θ̇1 + θ̇2) sin θ2,

λ23 =
1
2

cos θ2 · θ̈1 + 1
2
θ21 sin θ2. (9)

Λ, τ, and σ are represented as Λi, τi, and σi respectively
when time t = ti. By using these parameters, the iterative
least squares algorithm for estimating the physical param-
eters is derived:

σN = σN−1 − PNΛ
T
N(ΛNσN−1 − τN), (10)

PN = PN−1 − PN−1Λ
T
N(I + ΛN PN−1Λ

T
N)−1ΛN PN−1. (11)

At the beginning, the initial values σ0 and P0 are given and
the input and output data (τ1 and Λ1) are obtained. Then a
new physical parameter σ1 is calculated by using Eq. (10),
and a parameter P1 is calculated by using Eq. (11). By re-
peating the procedure, we can update physical parameters.
Figure 4 shows the PID-DAC after applying system identi-
fication method.

4. Simulation results

We applied the proposed method to the 2-link vertical
manipulator as shown in Fig. 3. Table 1 and 2 shows
manipulator specifications and parameters of the control
system respectively. The desired angle for each joint is
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Figure 5: Angular error: PID control, horizontal plane
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Figure 6: Angular error: PID control, vertical plane
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Figure 7: Angular error: PID-DAC control, vertical plane
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Figure 8: Angular error: PID-DAC with system identifica-
tion, vertical plane

θd(t) = 0.7 sin (2πt/5). A low pass filter (LPF) is applied
to the input torque in order to eliminate high frequency el-
ements since the differential estimator works as a high pass
filter. For the LPF, first-order Butterworth filter with a cut-
off frequency of 4Hz is used. In order to confirm the robust-
ness of the proposed algorithm, payload is changed from
100g to 250g at time 7.5s.

Figures 5 and 6 show angular errors that are obtained
by using the conventional PID controller. Attitude of the
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Figure 9: Angular error: PID control, vertical plane, joint-2
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Figure 10: Angular error: PID-DAC, vertical plane, joint-2

0 10 20
-0.05

0

0.05

Time [sec]

A
ng

ul
ar

 e
rr

or
 [

ra
d]

Figure 11: Angular error: PID-DAC with system identifi-
cation, vertical plane, joint-2

manipulator is horizontal in the case of Fig. 5, and vertical
in the case of Fig. 6. It can be concluded that the con-
trol performance shown in Fig. 6 is inferior to Fig. 5. The
difference of the results obtained in Figs. 5 and 6 is an in-
fluence of gravity term, namely an influence of nonlinear
term. These results show that the PID control system can-
not work properly under the influence of nonlinear term.

Figure 7 shows angular errors obtained by applying the
PID-DAC controller to the vertical manipulator. It shows
that the PID-DAC controller has a good robustness against
nonlinear terms. However, high frequency vibrations occur
at time t=7.5s, which can destabilize the control system.

Figure 8 shows angular errors obtained by applying the
PID-DAC controller with system identification algorithm
to the vertical manipulator. It shows a better control per-
formance than those obtained in Fig. 7, even with payload
changes. On comparing results for time taken to calculate
the physical parameters for the online system identification
algorithm with the offline system, the online system took
0.076ms, whereas, for the offline system the time taken is
1.2ms. It is because the offline system requires a calcula-
tion of 500 input and output data to obtain physical parame-
ters. These results show that the calculation time is signifi-
cantly reduced by applying the online system identification
algorithm. In general, the sampling time of the mechanical
system is a few milliseconds and for our proposed method
the calculation time is short enough to be implemented to a
mechanical system.

5. Experimental results

Experiments were performed on the simulation condi-
tions. For the experiment, a payload of 150g was added
at about 10s. Figures 9, 10 and 11 shows angular errors
of joint 2, when the attitudes of the manipulator are verti-
cal. The controller for Figs. 9–11 are PID, PID-DAC and
PID-DAC with system identification respectively. These
results shows that the control performance of the proposed
method are superior to the conventional PID and PID-DAC
algorithm.

The sampling period of the simulations and experiments
is 2ms. We can implement the proposed algorithm to the
actual equipment by using a common digital signal proces-
sor. The proposed method can be applied to wide area of
mechanical systems.

6. Conclusions

This paper presents performance improvements of PID-
DAC by applying the online system identification. The va-
lidity of the proposed method was confirmed by perform-
ing simulations and experiments using a 2-link manipula-
tor. The results show the validity of the proposed method
from the viewpoints of control performances. Furthermore,
the calculation time is short enough to realize real time con-
trol.
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