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Abstract—This paper is concerned with the problem of
verifying the accuracy of an approximate solution of a lin-
ear system. A fast method is developed for calculating both
lower and upper error bounds of the approximate solution,
which are as tight as needed, with verifying the nonsingu-
larity of the coefficient matrix. Numerical results are pre-
sented elucidating the performance of the proposed verifi-
cation method.

1. Introduction

We are concerned with the problem of verifying the ac-
curacy of an approximate solution x̃ of a linear system

Ax = b, (1)

where A is a real n×n matrix and b is a real n-vector. If A is
nonsingular, there exists a unique solution x∗ := A−1b. We
aim on verifying the nonsingularity of A and calculating
some ε, ε ∈ Rn such that

o ≤ ε ≤ |x∗ − x̃| ≤ ε, (2)

where o := (0, . . . , 0)T ∈ Rn. A geometric image of the in-
clusion for the exact solution x∗ such as (2) can be depicted
as in Figure 1.

A number of fast self-validating algorithms (cf., for ex-
ample, [2, 4, 8]) have been proposed to verify the nonsingu-
larity of A and to compute ε in (2). In addition, this paper
also considers to compute ε. If εi ≈ ε i, then we can ver-
ify that the error bounds (and the verification) are of high
quality!

A main point of this paper is to develop a method of cal-
culating both ε and ε satisfying (2), which are as tight as
we need. If we obtain tight error bounds, we can set an ap-
propriate criterion for improving an approximate solution
x̃ by the iterative refinement method.

We assume that the floating-point system used in this
paper follows IEEE standard 754 for floating-point arith-
metic. Moreover, we suppose that all floating-point opera-
tions are executed according to the rounding mode defined
in IEEE standard 754. Under such conditions, we will pro-
pose a fast algorithm of calculating a verified solution x̃ of
(1) in terms of (2). Numerical results are presented eluci-
dating properties and efficiencies of the proposed verifica-
tion method.
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Figure 1: Inner and outer enclosure of the exact solution
(two-dimensional case). The exact solution x∗ exists in Ω.

2. Notation and definitions

We start by stating some well-known properties on
floating-point numbers. Let R denote the set of real num-
bers. Let F be a set of floating-point numbers following
IEEE standard 754. Let u be the unit roundoff. In IEEE
754 double precision arithmetic, u = 2−53. It is well-known
that F is symmetric, i.e., f ∈ F ⇒ − f ∈ F, so that | f | is ex-
act for f ∈ F. Throughout this paper, we assume that the
operations in fl (· · ·) is all executed by floating-point arith-
metic in given rounding mode (default is round-to-nearest).
Throughout the paper we assume that no overflow occurs.
This usually leads to a premature stop of calculations, so
we do not have to check for this. Furthermore, we as-
sume that the floating-point system in this paper supports
the gradual underflow, which is a requirement of IEEE 754
standard.

Let IR denote the set of interval real numbers and IF
denote a set of interval floating-point numbers. Note that
IF ⊂ IR. For a real matrix A = (ai j) ∈ Rn×n, we denote
by |A| = (|ai j|) ∈ Rn×n the nonnegative matrix consist-
ing of entrywise absolute values. For real n × n matrices
A = (ai j), B = (bi j), an inequality A ≤ B is understood en-
trywise, i.e., ai j ≤ bi j for all (i, j). We express an interval
matrix including A by [A] := [A, A] ∈ IRn×n where A and A
is a lower and an upper bound of A, respectively. For real
vectors, we apply these definitions similarly. The magni-
tude of an interval quantity [a] ∈ IR, which is the largest
absolute value in [a], is defined by

mag([a]) := max
a∈[a,a]

|a|.

For an interval vector and an interval matrix, it is applied
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entrywise.
Throughout this paper, n-vectors e and o are defined

by e := (1, . . . , 1)T and o := (0, . . . , 0)T , respectively.
For p ∈ {1, 2,∞} we denote p-norm of a real n-vector
x = (x1, . . . , xn)T and a real m × n matrix A = (ai j) by

‖x‖1 :=
n∑

i=1

|xi|, ‖x‖2 :=
n∑

i=1

x2
i , ‖x‖∞ := max

1≤i≤n
|xi|

‖A‖1 := max
1≤ j≤n

m∑

i=1

|ai j|, ‖A‖2 := σmax(A),

‖A‖∞ := max
1≤i≤m

n∑

j=1

|ai j|,

where σmax(A) is the largest singular value of A. Moreover,
condition number of A is defined by

condp(A) := ‖A‖p‖A−1‖p.

3. Verification theory

In this section, we will propose a method of calculating
a tight error bound of an approximate solution x̃ of a linear
system Ax = b.

We present in the following a linearized version of Ya-
mamoto’s theorem [10] to calculate the componentwise er-
ror bound of an approximate solution of a linear system.

Theorem 3.1 (Yamamoto [10]) Let A be a real n × n ma-
trix and b be a real n-vector. Let x̃ be an approximate so-
lution of Ax = b and r := b − Ax̃. Suppose R is an approxi-
mate inverse of A and G := I−RA with I denoting the n×n
identity matrix. If ‖G‖∞ < 1, then A is nonsingular and

|A−1b − x̃| ≤ |Rr| + ‖Rr‖∞
1 − ‖G‖∞ |G|e. (3)

On the other hand, the following alternative approach for
calculating the componentwise error bound is known in [2].

Theorem 3.2 (Ogita et al. [2]) Let A, b, x̃ and r be as in
Theorem 3.1. Let ỹ be an approximate solution of Ay = r.
If A is nonsingular, then it holds that

|A−1b − x̃| ≤ |ỹ| + ‖A−1‖p‖r − Aỹ‖pe (4)

for p ∈ {1, 2,∞}.
The advantages of this approach are as follows:

• Although it needs an upper bound of ‖A−1‖p, it does
not necessarily need to compute an approximate in-
verse R of A.

• If ỹ is accurate enough, then the reminder term
‖A−1‖p‖r − Aỹ‖pe becomes almost negligible.

• It is compatible with iterative refinement and stag-
gered correction (see Section 4).

The point of Theorem 3.2 is that ỹ can arbitrarily be im-
proved for a fixed approximate solution x̃.

If an LU factorization with partial pivoting of A has
been executed for calculating an approximate solution x̃ of
Ax = b, we can compute the approximate inverse R of A
by some algorithm (e.g. LAPACK’s DGETRI) in 4

3 n3 flops1.
For example, using Matlab’s notation we can proceed as
follows:

[L,U, P] = lu(A); % LU factorization: 2
3 n3 flops

x̃ = U\(L\(P ∗ b)); % forward/backward substitutions
T = I/U; % solve TU = I for T : 1

3 n3 flops
R = T/L; % solve RL = T for R: n3 flops
R = R ∗ P; % permutation, R ≈ A−1

or more simply

R = inv(A); % R ≈ A−1: 2n3 flops
x̃ = R ∗ b;

Here, we emphasize that computing the approximate in-
verse R of A is a necessary measure for obtaining a rigor-
ous error bound of the approximate solution x̃ of Ax = b,
although it is widely held that computing R is not an effi-
cient strategy for solving Ax = b.

After obtaining R ∈ Fn×n, a main part of computational
effort to obtain the error bounds of x̃ is to calculate an upper
bound of ‖I −RA‖∞. To do this, a possibility is to calculate
[G] ∈ IFn×n such that I − RA ⊆ [G]. It is known (e.g. [4])
that if ‖mag([G])‖∞ < 1, then an upper bound ρ of ‖A−1‖∞
can be obtained by

‖A−1‖∞ ≤ ‖R‖∞
1 − ‖I − RA‖∞ ≤

‖R‖∞
1 − ‖mag([G])‖∞ =: ρ. (5)

Using a usual matrix multiplication for including I − RA
with directed rounding requires 4n3 flops [4]. If an a priori
estimation for fl (RA) is used, it requires 2n3+O(n2) flops by
calculating fl (I − RA) in 2n3 flops and fl (|R|(|A|e)) in O(n2)
flops. Faster (but less stable) methods of calculating an
upper bound of ‖I − RA‖∞ have also been presented in [4].

4. Iterative refinement and staggered correction

To obtain a tight enclosure of an approximate solution x̃
of a linear system Ax = b, we introduce an approach so-
called “staggered correction”.

Let u := 2−53. Using an iterative refinement (cf., e.g. [1])
for an approximate solution x̃ ∈ Fn, we may improve x̃ by
x̃+y where y :=

∑q
k=1 z(k) with z(k) ∈ Fn for 1 ≤ k ≤ q. Then

z(k) is called the staggered correction for x̃. This approach
seems to be already used in [7]. If a good approximate
inverse R of A has been calculated, we can obtain x̃+y with

1addition, subtraction, multiplication or division are counted as one
operation
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arbitrarily high precision using the iterative refinement:

y(0) = o
for k = 1, 2, . . . , q

r(k) = accdot(b − A(x̃ + y(k−1))) % accurate residual
z(k) = fl

(
Rr(k)
)

% correction term
y(k) = fl

(
y(k−1) + z(k)

)

This makes only sense for calculating the residual b−A(x̃+
y(k−1)) when an accurate dot product is available. Fortu-
nately, fast and portable methods for obtaining the accurate
dot product have been developed in [3, 5]. We can use them
for this purpose. For detail, see [3, 5].

We now assume that ‖G‖∞ < 1 for G := I − RA. Then A
is nonsingular. For an arbitrary ỹ ∈ Rn, it holds that

A−1b − x̃ = A−1b − (x̃ + ỹ) + ỹ

and

|ỹ| − ε ≤ |A−1b − x̃| ≤ |ỹ| + ε with ε := |A−1b − (x̃ + ỹ)|.
By regarding x̃ + ỹ as an approximate solution of Ax = b
(or ỹ as that of Ay = r where r := b − Ax̃), Theorem 3.1
implies

ε ≤ |R(b − A(x̃ + ỹ))| + ‖R(b − A(x̃ + ỹ))‖∞
1 − ‖G‖∞ |G|e

≤ |R(r − Aỹ)| + ‖G‖∞‖R(r − Aỹ)‖∞
1 − ‖G‖∞ e =: ε1.

On the other hand, suppose ‖A−1‖p ≤ ρ. Then it follows for
p ∈ {1, 2,∞} that

ε = |A−1(b − A(x̃ + ỹ))| = |A−1(r − Aỹ)|
≤ ‖A−1(r − Aỹ)‖∞e ≤ ‖A−1(r − Aỹ)‖pe

≤ ρ‖r − Aỹ‖pe =: ε2.

From the above-mentioned discussions, we finally have
the following propositions. Note that the validity of the
propositions is independent of the quality of ỹ.

Proposition 4.1 Let A,R,G, b, e, x̃ and r be as in Theorem
3.1. Let ỹ be an approximate solution of Ay = r. If ‖G‖∞ <
1, then A is nonsingular and

max(|ỹ| − ε1, o) ≤ |A−1b − x̃| ≤ |ỹ| + ε1, (6)

where

ε1 := |R(r − Aỹ)| + ‖G‖∞‖R(r − Aỹ)‖∞
1 − ‖G‖∞ e.

Proposition 4.2 Let A, b, x̃ and r be as in Theorem 3.1.
Let ỹ be an approximate solution of Ay = r. Assume
that A is nonsingular and ρ satisfies ‖A−1‖p ≤ ρ for any
p ∈ {1, 2,∞}. Then

max(|ỹ| − ε2, o) ≤ |A−1b − x̃| ≤ |ỹ| + ε2, (7)

where ε2 := ρ‖r − Aỹ‖pe.

From Proposition 4.1, we can obtain tight component-
wise lower and upper error bounds of x̃ by updating ỹ using
the iterative refinement until satisfying

|ỹi| ≥ (ε1)i for all i, ỹi � 0, (8)

which becomes an appropriate stopping criterion for the it-
erations. Moreover, from Proposition 4.2 after obtaining
an upper bound ρ of ‖A−1‖p, we can also set an appropriate
stopping criterion

min
1≤i≤n, ỹi�0

|ỹi| ≥ ρ‖r − Aỹ‖p (9)

for the iterative refinement.

5. Convergence of iterative refinement

Assume that an approximate inverse R ∈ Fn×n of A is
computed by some backward stable algorithm, e.g. LU fac-
torization with partial pivoting. Let x̃ = Rb. Then, without
iterative refinement, the following is known as a rule of
thumb: For µ := cond∞(A) < u−1 and G := I −RA, it holds
that

|Gi j| = O(u) · µ for all (i, j). (10)

Since

|A−1b − x̃| = |A−1b − Rb| = |(I − RA)A−1b| ≤ |G||A−1b|,
it holds that

|A−1b − x̃| ≤ ‖A−1b‖∞|G|e. (11)

After an iterative refinement, it follows by y(1) = R(b− Ax̃)
that

|A−1b − (x̃ + y(1))| = |A−1b − x̃ − R(b − Ax̃)|
= |(I − RA)(A−1b − x̃)|
≤ |G||A−1b − x̃|. (12)

Inserting (11) into (12) yields

|A−1b − (x̃ + y(1))| ≤ ‖A−1b‖∞|G|2e.

For k ≥ 2, it can inductively be proven for y(k) = y(k−1) +

R(b − A(x̃ + y(k−1))) that

|A−1b − (x̃ + y(k))| ≤ ‖A−1b‖∞|G|k+1e

and
|A−1b − (x̃ + y(k))| ≤ αk+1‖A−1b‖∞e, (13)

where α := ‖G‖∞ = O(nu) · µ. Therefore, if α < 1, then the
iterative refinement converges with the factor α for each
iteration. In practice, due to the rounding error, we have
x̃(k) = fl

(
x̃ + y(k)

)
with x̃(0) = x̃ and

|A−1b − x̃(k)| ≤ u|A−1b| + O(αk+1)‖A−1b‖∞e + uNe,

where uN denotes the smallest positive normalized floating-
point number. This is a componentwise error bound and
explains behavior of the iterative refinement.
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Table 1: History of iterative refinement for k = 0, 1, 2.

i x̃(0)

1 −171.1885408678072
2 1.021301738732815 · 103

3 1.000055792398647 · 106

4 1.000000083648967 · 109

i x̃(1)

1 0.999935694692795
2 1.000000011437893 · 103

3 0.999999999979213 · 106

4 0.999999999999980 · 109

i x̃(2)

1 1.000000000002729
2 1.000000000000000 · 103

3 1.000000000000000 · 106

4 1.000000000000000 · 109

6. Numerical example

To confirm our discussions, let us consider the case
where A ∈ F5×5 with cond∞(A) ≈ 1010 and A−1b =
(1, 103, 106, 109, 134217728)T. Note that it is the exact
solution, which does not include rounding errors. The
last component 134217728 is not important but neces-
sary only for generating a part of the exact solution
(1, 103, 106, 109)T , so that we omit to consider it. All com-
putations are done in double precision arithmetic on Mat-
lab, so that u = 2−53 ≈ 10−16. An approximate inverse
R ∈ F5×5 of A is computed by a Matlab function inv, which
uses LAPACK routines. Then, α = ‖I − RA‖∞ ≈ 10−6 (be-
cause u·cond∞(A) ≈ 10−6). An initial approximate solution
x̃(0) is computed by x̃(0) = fl (Rb).

The result of the iterative refiment is displayed in Ta-
ble 1. As expected, each component is gradually improved
with the factor α, in this case about 6 decimal digits, for
each iteration until having the maximum accuracy.

Therefore, we can observe the following tendency of the
iterative refinement: Let x∗ := A−1b, xmax := max1≤i≤n |x∗i |
and xmin := min1≤i≤n |x∗i |. Suppose xmin � 0. If xmax/xmin is
very large, then it is likely that the component of x̃ corre-
sponding to xmin is relatively less accurate than that to xmax.
An extreme case is that xmin = 0. In such a case, the iter-
ative refinement generally does not converge until entering
underflow range.

Using our verification method, tight error bounds ε and
ε in (2) for approximate solutions x̃(k), k = 0, 1, 2 can be
obtained. For example, the verification result for x̃(1) is dis-
played in Table 2. From this, we can confirm that the pro-
posed verification method provides very tight error bounds
for the approximate solution of the linear system.

Table 2: Verification result for x̃(1).

i ε

1 2.034100276659818 · 10−5

2 7.057380003060988 · 10−6

3 3.314692464342579 · 10−6

4 1.502037048339663 · 10−5

i ε

1 2.034100406248809 · 10−5

2 7.057380547965357 · 10−6

3 3.314693458379401 · 10−6

4 1.502037291962698 · 10−5
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