
Error-free transformations in real and complex floating point arithmetic

Stef Graillat† and Valérie Ménissier-Morain†

†Laboratoire LIP6, Département Calcul Scientifique
Université Pierre et Marie Curie (Paris 6)

4 place Jussieu, F-75252, Paris cedex 05, France
Email: Stef.Graillat@lip6.fr, Valerie.Menissier-Morain@lip6.fr

Abstract— Error-free transformation is a concept that
makes it possible to compute accurate results within a float-
ing point arithmetic. Up to now, it has only be studied
for real floating point arithmetic. In this short note, we
recall the known error-free transformations for real arith-
metic and we propose some new error-free transformations
for complex floating point arithmetic. This will make it
possible to design some new accurate algorithms for sum-
mation, dot product and polynomial evaluation with com-
plex entries.

1. Introduction

It is well-known that computing with finite precision im-
plies some rounding errors. These errors leads often to in-
exact results for a computation. An important tool to try
to avoid this are the error-free transformations: a floating
point approximation plus an exact error term. This can be
view as a double-double floating point numbers [10] but
without the renormalisation step. For classical problems
such that summation, dot product and polynomial evalua-
tion this step is not necessary.

Error-free transformations have been widely used to pro-
vide some new accurate algorithms in floating point arith-
metic (see [12, 14] for accurate sum and dot product and
[4] for polynomial evaluation).

Complex error-free transformations are the first step for
providing accurate algorithms using complex numbers.

The rest of the paper is organised as follows. In Sec-
tion 2, we recall some results on real floating point arith-
metic and on the error-free transformations. In Section 3,
we present the complex floating point arithmetic and we
propose some new error-free transformations for this arith-
metic.

2. Real floating point arithmetic

In this section, we first recall the principle of the real
floating point arithmetic. Then we present the well-known
error-free transformations associated with the classic op-
erations that are addition, subtraction, multiplication and
division.

2.1. Definitions and notations

Throughout the paper, we assume to work with a floating
point arithmetic adhering to IEEE 754 floating point stan-
dard [8]. We assume that no overflow occurs, but allow un-
derflow. The set of floating point numbers is denoted by F,
the relative rounding error by eps and the underflow unit by
eta. For IEEE 754 double precision, we have eps = 2−53

and eta = 2−1074.
We denote by fl(·) the result of a floating point compu-

tation, where all operations inside parentheses are done in
floating point working precision.

Floating point operations in IEEE 754 satisfy [7]

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2)
for ◦ ∈ {+,−} and |εν | ≤ eps

and

fl(a ◦ b) = (a ◦ b)(1 + ε1) + η1 = (a ◦ b)/(1 + ε2) + η2

for ◦ ∈ {·, /} and |εν | ≤ eps, |ην | ≤ eta.

Addition and subtraction are exact in case of underflow [6],
and ε1η1 = ε2η2 = 0 for multiplication and division [7,
p.56]. This implies that

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b| and
|a ◦ b− fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ ∈ {+,−} (1)

and

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b|+ eta and
|a ◦ b− fl(a ◦ b)| ≤ eps|fl(a ◦ b)|+ eta for ◦ ∈ {·, /}.

(2)

We use standard notation for error estimations. The quan-
tities γn are defined as usual [7] by

γn :=
neps

1− neps
for n ∈ N,

where we implicitly assume that neps ≤ 1.

2.2. Error-free transformations in real floating point
arithmetic

One can notice that for a and b in F, a ◦ b ∈ R and
fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F. It

2007 International Symposium on Nonlinear Theory and its
Applications
NOLTA'07, Vancouver, Canada, September 16-19, 2007

- 341 -

is known that for the basic operations +,−, ·, the approxi-
mation error of a floating point operation is still a floating
point number (see for example [3]):

x = fl(a◦b) ⇒ a◦b = x+y with ◦ ∈ {+,−, ·} and y ∈ F,
(3)

where no underflow is assumed for multiplication.These
are error-free transformations of the pair (a, b) into the pair
(x, y).

Fortunately, the quantities x and y in (3) can be com-
puted exactly in floating point arithmetic. For the algo-
rithms, we use Matlab-like notations.

For addition, we can use the following algorithm by
Knuth [9, Thm B. p.236].

Algorithm 2.1 (Knuth [9]). Error-free transformation of
the sum of two floating point numbers

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

Another algorithm to compute an error-free transforma-
tion is the following algorithm from Dekker [3]. The draw-
back of this algorithm is that we have x+y = a+b provided
that |a| ≥ |b|.

Algorithm 2.2 (Dekker [3]). Error-free transformation of
the sum of two floating point numbers.

function [x, y] = FastTwoSum(a, b)
x = fl(a + b)
y = fl((a− x) + b)

For the error-free transformation of a product, we first
need to split the input argument into two parts. Let p be
given by eps = 2−p and define s = dp/2e. For example, if
the working precision is IEEE 754 double precision, then
p = 53 and s = 27. The following algorithm by Dekker [3]
splits a floating point number a ∈ F into two parts x and y
such that

a = a1+a2 and a1 and a2 non overlapping with |a2| ≤ |a1|.

Algorithm 2.3 (Dekker [3]). Error-free split of a floating
point number into two parts

function [a1, a2] = Split(a)
factor = fl(2s + 1)
c = fl(factor · a)
a1 = fl(c− (c− a))
a2 = fl(a− a1)

With this function, an algorithm from Veltkamp (see [3])
enables to compute an error-free transformation for the
product of two floating point numbers. This algorithm re-
turns two floating point numbers x and y such that

a · b = x + y with x = fl(a · b).

Algorithm 2.4 (Veltkamp [3]). Error-free transformation
of the product of two floating point numbers

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1)− a2 · b1)− a1 · b2))

In case of underflow of any of the five multiplications
in Algorithm 2.4, the error y′ is no more a floating point
number but we have |y′ − y| ≤ 5 eta.

The following theorem summarises the properties of al-
gorithms TwoSum and TwoProduct.

Theorem 2.1 (Ogita, Rump and Oishi [12]). Let a, b ∈ F
and let x, y ∈ F such that [x, y] = TwoSum(a, b) (Algo-
rithm 2.1). Then, also in the presence of underflow,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x|,
|y| ≤ eps|a + b|.

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x, y ∈ F such that [x, y] =
TwoProduct(a, b) (Algorithm 2.4). Then, if no underflow
occurs,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x|,
|y| ≤ eps|a · b|,

and in the presence of underflow

a·b = x+y+5η, x = fl(a·b), |y| ≤ eps|x|+5eta,
|y| ≤ eps|a · b|+ 5 eta,

with |η| ≤ eta. The algorithm TwoProduct requires 17
flops.

The TwoProduct algorithm can be re-written in a very
simple way if a Fused-Multiply-and-Add (FMA) operator is
available on the targeted architecture [11, 1]. This means
that for a, b, c ∈ F, the result of FMA(a, b, c) is the nearest
floating point number of a · b + c ∈ R. The FMA satisfies

FMA(a, b, c) = (a·b+c)(1+ε1)+η1 = (a·b+c)/(1+ε2)+η2

with |εν | ≤ eps, |ην | ≤ eta.

Algorithm 2.5 (Ogita, Rump and Oishi [12]). Error-free
transformation of the product of two floating point numbers
using an FMA.

function [x, y] = TwoProductFMA(a, b)
x = fl(a · b)
y = FMA(a, b,−x)

In the same way, if we suppose that we have
ADD3(a, b, c) which computes the nearest floating point
number of the exact sum a + b + c ∈ R for a, b, c ∈ F
then the algorithm TwoSum can be replaced by the follow-
ing one.

- 342 -

Algorithm 2.6 (Ogita, Rump and Oishi [12]). Error-free
transformation of the sum of two floating point numbers
using ADD3.

function [x, y] = TwoSumADD3(a, b)
x = fl(a + b)
y = ADD3(a, b,−x)

An error-free algorithm for the FMA has been recently
given by Boldo and Muller [1]. The error cannot be rep-
resented by a single floating-point number anymore. It is
now the sum of two floating point numbers.

Algorithm 2.7 (Boldo and Muller [1]). Error-free trans-
formation of the FMA of three floating point numbers.

function [x, y, z] = ThreeFMA(a, b, c)
x = FMA(a, b, c)
[u1, u2] = TwoProductFMA(a, b)
[α1, z] = TwoSum(c, u2)
[β1, β2] = TwoSum(u1, α1)
y = fl((β1 − x) + β2)

It follows easily from [1] that the following proposition
holds.

Proposition 2.2. Let a, b, c ∈ F and let x, y, z ∈ F such
that [x, y, z] = ThreeFMA(a, b, c) (Algorithm 2.7). Then, if
no underflow occurs,

a·b+c = x+y+z, x = fl(a·b+c), |y+z| ≤ eps|x|,
|y + z| ≤ eps|a · b + c|, y = 0 or |y| > |z|,

and in the presence of underflow

a · b + c = x + y + z + η, x = fl(a · b + c),
|y+z| ≤ eps|x|+eta, |y+z| ≤ eps|a·b+c|+eta,

and y = 0 or |y| > |z| with |η| ≤ eta. The algorithm
ThreeFMA requires 17 flops.

3. Complex floating point arithmetic

We denote by F + iF the set of complex floating point
numbers. As in the real case, we denote by fl(·) the result
of a complex floating point computation, where all opera-
tions inside parentheses are done in floating point working
precision. One can show [7, 13] that for x, y ∈ F + iF,

fl(x ◦ y) = (x ◦ y)(1 + ε1) = (x ◦ y)/(1 + ε2),
for ◦ ∈ {+,−} and |εν | ≤ eps, (4)

and

fl(x · y) = (x · y)(1 + ε1) + η1,

|ε1| ≤
√

2γ2, |η1| ≤ 2
√

2eta. (5)

It follows that we have

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b| and
|a ◦ b− fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ ∈ {+,−}

and

|x · y − fl(x · y)| ≤
√

2γ2|x · y|+ 2
√

2eta.

For the complex multiplication, the term
√

2γ2 can ad-
vantageously be replaced by

√
5eps which is nearly opti-

mal (see [2]).

Algorithm 3.1. Error-free transformation of the sum of
two complex floating point numbers x = a + ib and
y = c + id

function [s, e] = TwoSumCplx(x, y)
[s1, e1] = TwoSum(a, c)
[s2, e2] = TwoSum(b, d)
s = s1 + is2

e = e1 + ie2

Theorem 3.1. Let x, y ∈ F+ iF and let s, e ∈ F+ iF such
that [s, e] = TwoSumCplx(x, y) (Algorithm 3.1). Then,
also in the presence of underflow,

x + y = s + e, s = fl(x + y), |e| ≤ eps|s|,
|e| ≤ eps|x + y|.

The algorithm TwoSumCplx requires 12 flops.

Proof. From Theorem 2.1 with TwoSum, we have s1+e1 =
a + c and s2 + e2 = b + d. It follows that s + e = x + y
with s = fl(x + y). From (4), we derive that |e| ≤ eps|s|
and |e| ≤ eps|x + y|.

Algorithm 3.2. Error-free transformation of the product
of two complex floating point numbers x = a + ib and
y = c + id

function [p, e, f, g] = TwoProductCplx(x, y)
[z1, h1] = TwoProduct(a, c)
[z2, h2] = TwoProduct(b, d)
[z3, h3] = TwoProduct(a, d)
[z4, h4] = TwoProduct(b, c)
[z5, h5] = TwoSum(z1,−z2)
[z6, h6] = TwoSum(z3, z4)
p = z5 + iz6

e = h1 + ih3

f = −h2 + ih4

g = h5 + ih6

Theorem 3.2. Let x, y ∈ F + iF and let p, e, f, g ∈
F + iF such that [p, e, f, g] = TwoProductCplx(x, y) (Al-
gorithm 2.4). Then, if no underflow occurs,

x·y = p+e+f+g p = fl(x·y), |e+f+g| ≤
√

2γ2|x·y|,

- 343 -

and in the presence of underflow

x · y = p + e + f + g + η, p = fl(x · y),

|e + f + g| ≤
√

2γ2|x · y|+ 10
√

2eta,

with |η| ≤ 10
√

2eta. The algorithm TwoProductCplx
requires 80 flops.

Proof. If no underflow occurs, from Theorem 2.1, it holds
that z1 + h1 = a · c, z2 + h2 = b · d, z3 + h3 = a · d,
z4 + h3 = b · c, z5 + h5 = z1 − z2 and z6 + h6 = z3 + z4.
By the definition of p, e, f , g, we conclude that x · y =
p + e + f + g with p = fl(x · y). From (5), we deduce that
|e + f + g| = |x · y − fl(x · y)| ≤

√
2γ2|x · y|. In case of

underflow, each use of TwoProduct produces a additional
error of at most 5η so that the use of two TwoProduct both
for the real and imaginary part produces an error of at most
10
√

2eta.

If one use TwoProductFMA instead of TwoProduct, the
numbers of flops falls down to 20, thus the availability of an
FMA is crucial for fast error-free transformations in complex
arithmetic.

4. Conclusion and future work

The aim for deriving error-free transformations is to pro-
vide some accurate algorithms for complex entries. The so-
lution to split the arguments and the results into their real
and imaginary parts is sufficient for summation or dot prod-
uct but not for the polynomial evaluation. That is why these
new error-free transformations for complex floating point
arithmetic will make it possible to derive complex versions
of the accurate algorithms to compute sum, dot product and
evaluation of polynomials [12, 14, 4]. This description, and
the comparison with the splitting approach for operations
where it is well suited, will be done in a future paper [5].

As we mentioned before, TwoProductCplxFMA is really
more efficient than TwoProductCplx. The use of the FMA
seems to be really important when available.

For the multiplication, the operation ab + cd is done
both for the real and imaginary part. The presence of an
operation FTMA (Fused Two Multiply and Add) computing
ab + cd with only one rounding would be very useful.

References

[1] Sylvie Boldo and Jean-Michel Muller. Some func-
tions computable with a Fused-mac. In Proceedings
of the 17th Symposium on Computer Arithmetic, Cape
Cod, USA, 2005.

[2] Richard Brent, Colin Percival, and Paul Zimmer-
mann. Error bounds on complex floating-point mul-
tiplication. Math. Comp., 76(259):1469–1481 (elec-
tronic), 2007.

[3] T. J. Dekker. A floating-point technique for extending
the available precision. Numer. Math., 18:224–242,
1971.

[4] Stef Graillat, Nicolas Louvet, and Philippe Langlois.
Compensated Horner scheme. Research Report 04,
Équipe de recherche DALI, Laboratoire LP2A, Uni-
versité de Perpignan Via Domitia, France, July 2005.

[5] Stef Graillat and Valérie Ménissier-Morain. Accurate
summation, dot product and polynomial evaluation in
complex floating point arithmetic. Technical report,
LIP6, Université Pierre et Marie Curie (Paris 6), 2007.
in preparation.

[6] John R. Hauser. Handling floating-point exceptions
in numeric programs. ACM Trans. Program. Lang.
Syst., 18(2):139–174, 1996.

[7] Nicholas J. Higham. Accuracy and stability of nu-
merical algorithms. Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, second
edition, 2002.

[8] IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985. Institute of Elec-
trical and Electronics Engineers, New York, 1985.
Reprinted in SIGPLAN Notices, 22(2):9–25, 1987.

[9] Donald E. Knuth. The Art of Computer Programming,
Volume 2, Seminumerical Algorithms. Addison-Wes-
ley, Reading, MA, USA, third edition, 1998.

[10] Xiaoye S. Li, James W. Demmel, David H. Bailey,
Greg Henry, Yozo Hida, Jimmy Iskandar, William
Kahan, Suh Y. Kang, Anil Kapur, Michael C. Mar-
tin, Brandon J. Thompson, Teresa Tung, and Daniel J.
Yoo. Design, implementation and testing of extended
and mixed precision BLAS. ACM Trans. Math.
Softw., 28(2):152–205, 2002.

[11] Yves Nievergelt. Scalar fused multiply-add instruc-
tions produce floating-point matrix arithmetic prov-
ably accurate to the penultimate digit. ACM Trans.
Math. Software, 29(1):27–48, 2003.

[12] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi
Oishi. Accurate sum and dot product. SIAM J. Sci.
Comput., 26(6):1955–1988, 2005.

[13] S. M. Rump. Verification of positive definiteness.
BIT, 46(2):433–452, 2006.

[14] Siegfried M. Rump, Takeshi Ogita, and Shin’ichi
Oishi. Accurate floating-point summation. Technical
Report 05.12, Faculty for Information and Communi-
cation Sciences, Hamburg University of Technology,
nov 2005.

- 344 -

	Navigation page
	Session at a glance
	Technical program

