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Abstract—This paper performs an analysis of frequency
entrainment described by van der Pol and PLL equations
based on dissipated power. The entrainment originates
from two different types of limit cycle. To explore the
relationship between the geometry of limit cycle and the
stability of entrainment, we investigate the entrainment by
applying dissipated power. The power corresponds to dis-
sipation part of averaged potential by Kuramitsu et al. We
show response curves for dissipated power. The result im-
plies that the magnitude of dissipated power is directly re-
lated to stability in the equations.

1. Introduction

Frequency entrainment has been extensively studied in
nonlinear dynamical systems interacting self-sustained os-
cillators [1, 2, 3]. The oscillators, exchanging their stored
energy through the interaction, synchronize. Therefore, en-
ergy exchange and balance in dynamical systems are cru-
cial for understanding frequency entrainment. However,
the energy aspect has not been fully used for analyzing fre-
quency entrainment except a few references [4, 5, 6].

We have performed an energy-based analysis of fre-
quency entrainment described by van der Pol and PLL
equations [7]. One purpose of the analysis is to clarify
the mechanism of entrainment with different types of limit
cycle: libration [8] for van der Pol equation and rotation
for PLL equation. Response curves for energy supplied by
driving oscillatory forces are shown in [7] to explore the
mechanism.

This paper provides an analysis of the frequency entrain-
ment based on dissipated power. The dissipated power co-
incides with the averaged potential for dissipation elements
in nonlinear circuits proposed by Kuramitsu et al [5, 6].
The averaged potential is applied to analysis of frequency
entrainment. Response curves for dissipated power are in-
vestigated numerically and analytically. Finally, we show
that the magnitude of dissipated power is related to stability
in the equations.

2. Model Equations

In this section, van der Pol and PLL equations are rein-
troduced with the definitions of energy balance relation.

2.1. Van der Pol Equation

The van der Pol equation [2, 9] is well known as










u̇= v,

v̇ = µ(1 − βu − γu2)v − u + B cos νt,
(1)

where µ denotes the small positive parameter. β and γ de-
pict the fixed parameters. B cos νt corresponds to the driv-
ing oscillatory force. The overdot denotes the differentia-
tion with respect to t. Here, a smooth function S v(u, v) is
defined as

S v(u, v) =
v2

2
+

u2

2
. (2)

S v is called storage function, which implies the physical
interpretation of stored energy in the system described by
Eq. (1). Now, an equality with energy balance is introduced
for the system. For any solution (u(t), v(t)), the following
equality is obtained in the interval [t1, t2]:

S v(u(t2), v(t2)) − S v(u(t1), v(t1))

= µ

∫ t2

t1

[

1 − βu(τ) − γ
{

u(τ)
}2
]

{

v(τ)
}2dτ

+ B
∫ t2

t1

v(τ) cos ντdτ.

(3)

On the right-hand side, the first term denotes dissipated en-
ergy during the interval, and the second term stands for en-
ergy supplied by the driving oscillatory force during the
same interval. The equality (3) implies the energy conser-
vation law of the system described by Eq. (1). The equality
is called an energy balance relation for the system.

2.2. PLL Equation

The PLL equation [10] is represented by














φ̇= y,

ẏ = −ky − sin φ + kσ + m
√

k2 + Ω2 cosΩt,
(4)
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where k and σ denote the fixed parameters. kσ and
m
√

k2 + Ω2 cosΩt are the driving constant and oscillatory
forces, respectively. The two variables (φ, y) belong to
cylindrical phase space S 1 × R, because of the periodic
restoring term − sin φ. A smooth function S p(φ, y) is de-
fined as

S p(φ, y) =
y2

2
− cos φ. (5)

S p also implies the physical interpretation of stored energy
in the system described by Eq. (4). Now, an equality with
energy balance is introduced for the system. For any so-
lution (φ(t), y(t)), the following equality is obtained in the
interval [t1, t2]:

S v(φ(t2), y(t2)) − S v(φ(t1), y(t1))

= −k
∫ t2

t1

{

y(τ)
}2dτ + kσ

∫ t2

t1

y(τ)dτ

+ m
√

k2 + Ω2

∫ t2

t1

y(τ) cosΩτdτ.

(6)

On the right-hand side, the first term denotes dissipated en-
ergy during the interval. The second and third term stand
for energy supplied by the driving constant and oscillatory
forces during the same interval. The equality (6) is, there-
fore, regarded as an energy balance relation for the system
described by Eq. (4).

3. Energy-Based Analysis [7]: Derivation of Response
Curves for Supplied Energy

We extract response curves for harmonic amplitude and
energy supplied by driving oscillatory force with their
derivation from [7].

3.1. Van der Pol Equation

Figure 1 shows response curves for harmonic amplitude
and supplied energy in Eq. (1). The parameter setting here
is the same as in the references [2, 7]:

µ = 0.15, β = γ =
4
3
. (7)

The frequency ν0 of stable libration is almost unity. The
harmonic amplitude derives from the following approxima-
tion of solution u(t):

u(t) = Av1(t) cos
{

νt + ϕv1(t)
}

. (8)

Av1 corresponds to the harmonic amplitude and ϕv1 the
phase difference between u(t) and the driving oscillatory
force B cos νt. The solution (8) leads to an averaged equa-
tion with variables Av1 and ϕv1. The derivation of the sup-
plied energy depends on the energy balance relation (3). By
substituting u(τ) and v(τ) = −νAv1(τ) sin

{

ντ + ϕv1(τ)
}

into
the equality (3) with the period 2π/ν, the following energy
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Figure 1: Response curves for (a) harmonic amplitude and
(b) supplied energy in van der Pol equation. The figures are
extracted from [7]. Solid lines denote the response curves
for stable solutions, and broken lines for unstable solutions.
The symbol × in (a) corresponds to the value of harmonic
amplitude at the parameter set (ν, B) = (ν0, 0).

balance relation is derived for the system described by the
averaged equation:

0 = µπνA2
v1

(

1 − γ
A2

v1

4

)

− πAv1B sinϕv1. (9)

On the right-hand side, the first term denotes dissipated en-
ergy during the period, and the second term stands for en-
ergy supplied by the driving oscillatory force during the
same period. The equality (9) makes it possible to derive
the response curves for supplied energy in Fig. 1(b).

The feature of response curves in Fig. 1 is explained be-
low. Each of the response curves has a maximum value for
stable solutions near the frequency ν0. The harmonic am-
plitude determines the sign of supplied energy. The reason
is that the driving oscillatory force does positive work to
the system under any solution with larger amplitude than
the stable libration. Furthermore, the harmonic amplitude
for stable solutions is larger than for coexisting unstable
solutions at each parameter set (ν, B).
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3.2. PLL Equation

Figure 2 shows response curves for harmonic amplitude
and energy supplied by driving oscillatory force in Eq. (4).
The parameters are set as the same as in the references [7,
11]:

k = 0.56, σ = 1.7. (10)

The frequency Ω0 of stable rotation is about 1.6. The har-
monic amplitude derives from the following approximation
of solution φ(t):



























φ(t)= Ωt + x(t), x(t) ≡ x
(

t +
2π
Ω

)

,

x(t)=
Ap0

2
+ Ap1(t) cos

{

Ωt + ϕp1(t)
}

.

(11)

Ap0 corresponds to the dc component, Ap1 the harmonic
amplitude, and ϕp1 the phase difference between x(t) and

the driving oscillatory force m
√

k2 + Ω2 cosΩt. The solu-
tion (11) leads to an averaged equation with variables Ap1

and ϕp1. The derivation of response curve is also based on
the energy balance relation (3). By substituting φ(τ) and
y(τ) = Ω − ΩAp1(τ) sin

{

Ωτ + ϕp1(τ)
}

into the equality (6)
with the period 2π/Ω, the following energy balance rela-
tion is derived for the system described by the averaged
equation:

0 = −πkΩ
(

2+A2
p1

)

+2πkσ−πm
√

k2 + Ω2Ap1 sinϕp1. (12)

On the right-hand side, the first term denotes dissipated en-
ergy during the period. The second term stands for energy
supplied by the driving constant force during the period,
and the third term represents energy supplied by the driv-
ing oscillatory force during the same period. The averaged
equation and the equality (12) make it possible to derive
the response curves in Fig. 2. Numerical integration dis-
criminates the stability.

The following depicts feature of response curves in Fig.
2. The supplied energy becomes zero for stable solutions
near at minimum harmonic amplitude. Furthermore, the
harmonic amplitude for stable solutions is smaller than for
coexisting unstable solutions at each parameter set (Ω,m).

4. An Analysis Based on Dissipated Power

In this section, we investigate the stability through the
dissipated power in van der Pol and PLL equations.

4.1. Van der Pol Equation

For van der Pol equation, dissipated power is now de-
fined. Eq. (1) is rewritten as























ẇ= u,

−u̇= w − µ

(

u − β
u2

2
− γ

u3

3

)

− B
ν

sin νt.
(13)
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Figure 2: Response curves for (a) harmonic amplitude and
(b) energy supplied by driving oscillatory force in PLL
equation. The figures are extracted from [7]. Solid lines
denote the response curves for stable solutions, and broken
lines for unstable solutions. The symbol × in (a) repre-
sents the value of harmonic amplitude at a parameter set
(Ω,m) = (Ω0, 0). In addition, the symbol ¯ corresponds to
the point at which harmonic amplitude Ap1 becomes zero.

Then Pv, which is called the mixed-potential [12], is de-
fined by

Pv(w, u, t) = wu − µ

(u2

2
− β

u3

6
− γ

u4

12

)

− B
ν

u sin νt. (14)

Time averaging of the mixed-potential corresponds to the
averaged potential proposed by Kuramitsu et al [5, 6].
Here, the term of the averaged potential is addressed with
respect to dissipation in Eq.(1). The term, denoted by Pv,
is as follows:

Pv = −µ
A2

v1

4

(

1 − γ
A2

v1

8

)

. (15)

The term Pv is related to dissipation in Eq. (1) and has a di-
mension of power in nonlinear circuits literature [5, 12]. It
is, therefore, regarded as dissipated power. Fig. 3(a) shows
response curves for dissipated power under the parameter
setting (7) in Eq. (1). The dissipated power for stable so-
lutions is smaller than for coexisting unstable solutions at
each parameter set (ν, B).
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Figure 3: Response curves for dissipated power in (a) van
der Pol equation and in (b) PLL equation. Solid lines de-
note the response curves for stable solutions, and broken
lines for unstable solutions. The symbol ¯ in (b) corre-
sponds to the point at which harmonic amplitude Ap1 be-
comes zero.

4.2. PLL Equation

For PLL equation, dissipated power is similarly defined.
Eq. (4) is rewritten in [13] as















cos φ φ̇= y cos φ,

−ẏ= sin φ + ky − kσ − m
√

k2 + Ω2 cosΩt.
(16)

Then, the mixed-potential Pp is defined by

Pp = y sin φ +
1
2

ky2 − kσy − m
√

k2 + Ω2y cosΩt. (17)

Here, in the same manner as van der Pol equation, the dis-
sipated power Pp for the averaged system is addressed:

Pp =
1
4

kΩ2(2 + A2
p1

)

. (18)

Fig. 3(b) shows response curves for the dissipated power
under the parameter setting (10). The dissipated power for
stable solutions is smaller than for coexisting unstable so-
lutions at each parameter set (Ω,m).

5. Concluding Remark

In this paper, dissipated power was applied for analyz-
ing the frequency entrainment described by van der Pol and
PLL equations. The power corresponds to the averaged po-
tential for dissipation elements in nonlinear circuits, which
was proposed by Kuramitsu et al. The contribution of this
paper is that the dissipated power for stable solutions be-
comes minimum value than for coexisting unstable solu-
tions in the equations. In other words, the dissipated power
shows the same feature related to stability for the frequency
entrainment with different types of limit cycle. The relation
between the power and stability corresponds to the impor-
tant statement on synchronization made by Kuramitsu et
al [5, 6]: averaged potential becomes a minimum value at
stable equilibrium point.
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