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Abstract— We here present a queue model to describe MPutflows aggregated
TCP network nodes with multiple input and multiple output ; input traffic 1 buffer )
flows and only one shared and limitedffar. We use this >\ Voorvers  oupe IS
gueue model together with performance estimation meth- 50\“ —

ods based on the fluid model to estimate TCP network per- ﬁ./ 5 .
formance by computer simulation and we report simulation "

results that give the utilization of each network link as a >./” —>N
function of the bifer size for a simple network topology. : K

Figure 1: Proposed network node structure.

1. Introduction

Fluid models are today’s commonly accepted and widely )
used technique for performance estimation of complex The node structure described above cannot be modeled

packet network. This approach neglects the packet-b§fither by an MM/1/K queue or by an YM/N/K queue be-
packet analysis and adopts a deterministic strategy baseapise the former only allows to have independent output
on the evaluation of the average network dynamics. I1ks and the latter doesn’t keep the input aggregatefiara
this framework, performance of congestion control strateédirécted to diferent output links separate. Figure 1 shows
gies can be evaluated and become important in the cadlé Proposed node structure. All the input flows are ag-
of TCP dynamic window flow control often employed in9régated to form the tfc directed to each one & out-

the Internet network. Several methods [1, 2, 3] have bed't links (this means that packets belonging tedent in-
presented to evaluate the rates of flow across complex n8it flows and directed to the same output link are undistin-
works by describing the network node behavior in termguishable at node level). Theaggregated inputs are then

of a queueing system. We here consider a queue model%ssed to the correspolndmg ou_tput servers but are stored
describe TCP network nodes with multiple input and mulinto @ shared bier of sizeK. With this system we can
tiple output flows and only one shared and limitedfeu model the behavior of a router more acc_:ura_tely. In fact, a
We consider a multidimensional truncated Markov queufPUter has a shared memory aNdutput circuits.

to allow multiple output links (section 3) all subjected to 10 describe such a system by a queueing model, we rely
a unique and size-limited Hier (section 4) instead of the t0 the truncated multidimensional Markov queue which is
classical approach based oriMJ1/K queues. We use this made byN M/M/1 Markov queues, one for each output link
queue model together with performance estimation metkl iS anN-server system), with a finite number of possible
ods [1, 4, 5] based on the fluid model to estimate TCPtates so that the sum of the queue lengths of these queues is
network performance by computer simulation and we réimited by K. The solution to this system allows to express
port simulation results (section 5) that give the utilipati the probability function and the loss probability from whic

of each network link as a function of the fier size for a the transfer probability can be calculated and appliedd1] t
simple network topology. evaluate the average network dynamics.

For a Markov queue, the probability function for the
queue lengthQ to be equal tk is fo(k) = P{Q =k} and

2. Definitions and system model the probability generating function is defined as

As introduced in [1], a computer network is classically o0
modeled by a grapB(V, E) with a setV of nodes (vertices) $o(2 = Z fQ(k)zk (1)
and a sek of directed links (edges). Each node is charac- pry

terized by a number of input and output links depending on

the network topology and the ffec on each input link must Given (1), the average queue length can be expressed as
be directed to a specific output link depending on the route [Q] = Y2 kfo(k) = déq (2)/dZ],_,.

a packet is assigned to. When an output link of a node is For M/M/1 queues (infinite hiier size) is

busy, the packet directed to that link is stored in &du

and if the bifer is full the packet is dropped. fo(k) = (1 - p)p* (2)
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$o@=1-p)/ (1-p2 The probability functionfg(k) is the linear combination
E[Ql =p/(1-p) 3) of the probability functionsfo (k) calculated at the same

buffer lengthk with the coéﬁments)(J (p, N). Note that it
p = A/u € [0,1] is the ratio between arrival and servicemuyst bep;j # pi; Vj, .

rates. For MM/1/K queues (bffer size limited tK) is Sincegg, (0) = Y, fo,(k) = 1, then from (6) also

1-p ¢ (0) =1, i.e. the new probability function is already nor-

fo(k) = 7 —xzzr (4)  malized. From this we can get an interesting property of
P the codficientsX| (p, N)

1-— p 1- (pZ)K+1

¢Q(@) = K+1 N
1-p 1-pz
et D Xi(p,N) =1 (8)

E[Q] = ——(K+1) i=1

-p K+1
| This result will be useful in the next section.

The blocking probability for the ¥M/1/K queue is equa In the special case in whigh = pr; V1.1, from (6) we

to the probability to be in th&-th state, i.e. the probablllty
that a new arrival finds the Iffier full, hence

1-p
1- $q (2 = ( )
Ps = —1_pf+lp'< (5) 1_[ 1- pZ 1-pz
and the transfer probability isr = 1 — ps. and by applying the negative binomial series we get
(N + k l
3. N M/M/1 queues with shared bifer P a——— Z
(1- PZ) k=0

We are now interested in finding the probability function
fo(k, N) = Pr{Q = kj of the sum of the queue lengthspgf ~ and then

M/M/1 queues, each one witig, (kj) = (1—p]‘)pij(j, where S [(NHK-1) Lol
k = 3N kj. It can easily be verified that the new prob- 9o(2 = kZO k (1-p)
ability *unction is theN-dimensional discrete convolution B

of the probability functionsfq, (kj). Hence, the probabil- It follows immediately that
ity generating functionpq (2) is simply the product of the

robability generating functiofo, (Z N+k-1
p yg g to, (2 folk N) = ( ! )(1_ N ©)
N N
1-pj
$q(2 = l—[¢Qj @ = 1_[ 1-pz (6) One can verify that (7) and (9) are equal to (2) when
=1 =1 ! N = 1, that is the new queue reduces to thd&vylL queue.
We can then develop] |\, (1 - p;z) by the the Lagrange _ o
partial fraction decomposition and write 4. N M/M/1 queues with shared and limited bifer
1 N P 1 To set a limit on the bffier size of the multidimen-
TN (1 < N  \1-o.z sional queue, we must multiply by a normalization con-
szl(l sz) =1 =y, (p, p') Pi stant so that the sum of the probabilities to be in the first
From geometric series, we can also writg1l— p;2) = K + 1 states is equal to one, i.e the cumulative probability

Pr{Q < K} = 1. This choice inplies that a packet leaves
the bufer only after the service completion. The case in
which a packet leaves the fier when the service starts is

S o with |pjzZ < 1 = |7 < 1/pj, to get

Sl N1 el much more complicated and allows thefien to have only
- — 0i )oK N—ll |; o . :
$Q(2d = ;) Z; (1 pl)pl Pj L pi—p 2 few additional free locations (from zero uphblocations),
= j =

%] i.e. N server registers are required but they are not shared.

With this, from (7) the cumulative probability is
It follows immediately from (1) that 0 P y

N K N
— —1_ K+ly.
folk N) = 3 1o,094; (0. N) 1) PIR=KIZ ) falkN) =1-) A7 (o) (10
j=1 - N
wherefq, (K) = (1_'0])’0;]_( and where the identity (8) has been applied. Now (7) must be

normalized by (10) and the final expression is

N
- 1-p N
Xj(p,N) = X (o1,....on, N) = o) [ | —=
' A J ];[p,-_p. fok K.N) = ¥ 1o, (MZ; (0. K.N)  (11)

[E3] j=1
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Figure 2: Transfer probability fa = 1,2, 3,4 andK = 1,4,64 in case of ~ Figure 4: Transfer probability fax = 1, 3,20 andK = 1,2,4,8,16,64 in
equal utilizations. Ellipses in the plot group the same vabfé together  case of unequal utilizations. Numbers in the plot indicatevilues oK

while different values oN are reported with dierent line styles. while different values oN are reported with dierent line styles.
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Figure 3: Normalized average queue lengthNoe 1,2,3 4,5 andK =  Figure 5: Normalized average queue length ffor= 1,3,20 andK =

1,4,8,64 in case of equal utilizations. Ellipses in the plot grdup same ~ 1,2,4,8,16,64 in case of unequal utilizations. Numbers in the plot indi-
values ofK together while dferent values oN are reported with dierent ~ cate the values df while different values oN are reported with dierent
line styles. line styles.

where The blocking probability is

Xj(p,N)
1- 3N KX (p,N)

The probability function of the new queue is still a linearand the transfer probability isr = 1 — pg.
combination as it was in (7) but with the new ¢dgents Finally we notice that settingl — oo the function (11)

N
Zi(p,K,N) = pB=Z(1—pj)pﬁ-<Zj (p.K,N)
=1

Zj(p.K,N). reduces to (7). In fact, since utilizations must be such that
In the special case in whighy = py; Vj,I, from (9) we 0 < p; < 1;Vj when the béfer is infinite due to obvi-
have ous stability constraints, then lig,. p;“l = 0. When the
(V)" buffer is finite, the system is stable even figr> 1.
folk K\N) = ——mn (12)  Figures 2 and 3 report the transfer probability =
Zkzo( k )p 1-ps = 1- fo(K, K, N) and the normalized average queue

One can verify that (11) and (12) are equal to (4) whelfN9th E [Ql/K respectively as a function of the total ag-
N = 1,i.e.Z; (p, K, N) reduces to the factor/{l — p*?) gregated tréic pr defined in general gsr = 2P and
and the newlqueue reduces to theWIL/K queue. specialized here tpr = Np, i.e. all utilizations are equal

Thanks to the form of (11), the average queue Iengt}ﬁ p- The grSt,f"’(‘th to td)edgb_servecf is that WE&]: 1b
follows from (3) straightforwardly the curves don’t depen , i.e. only one packet can be

served regardless of the number of available servers as ex-

K N ‘ pected. Secondly, the transfer probability for a largfdsu
E[Q] = Z kfo(k, K, N) = Z %Zj (p, K, N) sizeispr ~ 1forpr < N as expected, i.e. alarge queue can
=0 i transfer N flows with equal utilization without overloading
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Figure 6: Topology of the simple network for performance eatian.
5
. . . . . buffer
the bufer if each utilization is less or equal to the capa links 0 size

of Xne Off thle OUtpulE “T\ks' lized | igure 7: Link rate versus the fiar size for the network in Figure 6 where
S a final remark, the normalized average queue leng ch source rate is 500 Kbps and each link capacity is 3 Mbps.

in Figure 3 increases withl whenpt = N and its value

lies on the curve/(p + 1). This means that d¥ increases /

and the flows share the fbar equally, the bffier average 15— |

occupation increases even if the capacity is not saturated DZS‘“;::ZW

showing a clear aggregatiorifect of the adopted queue Lot flow

model. More precisely, if the flows were independent, the

expected normalized average queue length would be 0,5

whenp; = 1, j = 1,...,N which is not the case when the §

flows share a limited resource. | =t P4 [ S
As a diferent example, Figures 4 and 5 report a case”” | S P A

in which utilizations are strongly unequal because they are '

defined ap; = pr(j/ Z,Nzl ). In this case, the aggregation

effect is clearly present in the transfer probability which is = *~= =7 -

less than one before is approximately equal td\, that N1- N2 N2-D4  N3. D1 N3- D3

is since the servers are not used equally then the bIOCkirIl ure 8: Input, output and lost rates versus thédmsize for the network

prob_ablhty _IS hlgher t_han in the previous case. This Sltualﬁ Figure 6 \‘ljvhére epach source rate is 500 Kbps and each lirdcitgips

tion is confirmed in Figure 5 for thd = 3 case by the fact 1 mpps.

that the queue saturates for < N, i.e. only a few flows

occupy most of the Hier so that whept = N the bufer

has already been saturated by the high-rate flows causifgd link rates are dierent even if they are composed by the

losses to happen also for the low-rate flows. same number of flows.
Figure 8 shows the input, output and lost rates for an

insuficient link capacity of 1 Mbps. Additionally, due to
losses happened in nodes N1 and N2, the input rate of node
i3 is already lower than its maximum value.

1—

5
1 buffer size

5. Numerical example

Figure 6 shows the network topology we propose as
simple numerical example. Two sourcg§, S2 generate
8 flows that pass through 3 intermediate noN@sN2, N3 References
and reach 4 destination noded, D2, D3, D4. The flows [1] A. Fekete, G. Vattay and L. Kocarev, “Adaptive fiia in complex
ErSe—?g-)_:;, NS:_!I-.:: ND]].-'—?JI;IZL\I)J-D:, gg: IVDZZ’—?]NE)I—\)llDZ networks”,Proc. NOLTA, pp. 667-670, Sept 2006.

S2—- N2 -5 N3 - D2,S2— N2 - N3 — D3, S2— N2 [2] Y. H Kim, C. K. Un, “Performance Analysis of Statistic:’al N
— D4. Whith this, the intermediate nodes aréetiently .‘F:g’;g‘%gorggefgfieznﬁgu;;;rig’gzﬁ“ in an ATM Network”, IEEE
loaded and have afiierent number of output links. R '

Figure 7 shows the output rate of each link of interest d8§] V.B. Iversen, “The exact evaluation of multiservice laystem with
a function of the bffer size where each node has the same 2¢ess controlTeleteknik, Englished., vol 31 (1987), no.2, pp. 56-61,
buffer size, each output link has the same capacity and each '
source generates flows with the same rate. The output réte R.J. Gibbens, S.K. Sargood, C. Van Eijl, F.P. Kelly, H.maodeh,
is calculated according to the conservation of flow princi- 2‘.@53"33?3?525?5\;\22{' icilacﬁjfﬁnﬁég,:,)éigtzﬁg gggeili;fig;_x
ple and the transfer probability. With the chosen outplt lin .- |F?Traﬁc Meawrmgm, Modeling and Management, pp. 10-1—
capacity of 3 Mbps and source rate of 500 Kbps, the system 10-8, Sept 2000.
is far from Fhe loss boundary'. Dgpending on the number f] Y. Liu, F. Lo Presti, V. Mitra, D. Towsley, Y. Gu “Fluid modg and
flows passing trough a certain link, the 3 rate levels of 0.5 ¢ ions for large-scale IP networks’CM SGMETRICS, pp. 91—
Mbps, 1 Mbps and 1.5 Mbps can be recognized for a suf- 101, July 2003.
ficient bufer size. At lowerK, the flows experience losses
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