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Abstract— We here present a queue model to describe
TCP network nodes with multiple input and multiple output
flows and only one shared and limited buffer. We use this
queue model together with performance estimation meth-
ods based on the fluid model to estimate TCP network per-
formance by computer simulation and we report simulation
results that give the utilization of each network link as a
function of the buffer size for a simple network topology.

1. Introduction

Fluid models are today’s commonly accepted and widely
used technique for performance estimation of complex
packet network. This approach neglects the packet-by-
packet analysis and adopts a deterministic strategy based
on the evaluation of the average network dynamics. In
this framework, performance of congestion control strate-
gies can be evaluated and become important in the case
of TCP dynamic window flow control often employed in
the Internet network. Several methods [1, 2, 3] have been
presented to evaluate the rates of flow across complex net-
works by describing the network node behavior in terms
of a queueing system. We here consider a queue model to
describe TCP network nodes with multiple input and mul-
tiple output flows and only one shared and limited buffer.
We consider a multidimensional truncated Markov queue
to allow multiple output links (section 3) all subjected to
a unique and size-limited buffer (section 4) instead of the
classical approach based on M/M/1/K queues. We use this
queue model together with performance estimation meth-
ods [1, 4, 5] based on the fluid model to estimate TCP
network performance by computer simulation and we re-
port simulation results (section 5) that give the utilization
of each network link as a function of the buffer size for a
simple network topology.

2. Definitions and system model

As introduced in [1], a computer network is classically
modeled by a graphG(V, E) with a setV of nodes (vertices)
and a setE of directed links (edges). Each node is charac-
terized by a number of input and output links depending on
the network topology and the traffic on each input link must
be directed to a specific output link depending on the route
a packet is assigned to. When an output link of a node is
busy, the packet directed to that link is stored in a buffer
and if the buffer is full the packet is dropped.
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Figure 1: Proposed network node structure.

The node structure described above cannot be modeled
either by an M/M/1/K queue or by an M/M/N/K queue be-
cause the former only allows to have independent output
links and the latter doesn’t keep the input aggregated traffic
directed to different output links separate. Figure 1 shows
the proposed node structure. All the input flows are ag-
gregated to form the traffic directed to each one ofN out-
put links (this means that packets belonging to different in-
put flows and directed to the same output link are undistin-
guishable at node level). TheN aggregated inputs are then
passed to the corresponding output servers but are stored
into a shared buffer of sizeK. With this system we can
model the behavior of a router more accurately. In fact, a
router has a shared memory andN output circuits.

To describe such a system by a queueing model, we rely
to the truncated multidimensional Markov queue which is
made byN M/M/1 Markov queues, one for each output link
(it is anN-server system), with a finite number of possible
states so that the sum of the queue lengths of these queues is
limited by K. The solution to this system allows to express
the probability function and the loss probability from which
the transfer probability can be calculated and applied [1] to
evaluate the average network dynamics.

For a Markov queue, the probability function for the
queue lengthQ to be equal tok is fQ(k) = Pr{Q = k} and
the probability generating function is defined as

φQ (z) =
∞
∑

k=0

fQ(k)zk (1)

Given (1), the average queue length can be expressed as
E [Q] =

∑∞
k=0 k fQ(k) = dφQ (z)/dz

∣

∣

∣

z=1
.

For M/M/1 queues (infinite buffer size) is

fQ(k) = (1− ρ)ρk (2)
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φQ (z) = (1− ρ)/ (1− ρz)

E [Q] = ρ/(1− ρ) (3)

ρ = λ/µ ∈ [0,1[ is the ratio between arrival and service
rates. For M/M/1/K queues (buffer size limited toK) is

fQ(k) =
1− ρ

1− ρK+1
ρk (4)

φQ (z) =
1− ρ

1− ρK+1

1− (ρz)K+1

1− ρz

E [Q] =
ρ

1− ρ
− (K + 1)

ρK+1

1− ρK+1

The blocking probability for the M/M/1/K queue is equal
to the probability to be in theK-th state, i.e. the probability
that a new arrival finds the buffer full, hence

pB =
1− ρ

1− ρK+1
ρK (5)

and the transfer probability ispT = 1− pB.

3. N M/M /1 queues with shared buffer

We are now interested in finding the probability function
fQ(k,N) = Pr{Q = k} of the sum of the queue lengths ofN

M/M/1 queues, each one withfQ j(k j) =
(

1− ρ j

)

ρ
k j

j , where

k =
∑N

j=1 k j. It can easily be verified that the new prob-
ability function is theN-dimensional discrete convolution
of the probability functionsfQ j(k j). Hence, the probabil-
ity generating functionφQ (z) is simply the product of the
probability generating functionφQ j (z)

φQ (z) =
N

∏

j=1

φQ j (z) =
N

∏

j=1

1− ρ j

1− ρ jz
(6)

We can then develop
∏N

j=1

(

1− ρ jz
)

by the the Lagrange
partial fraction decomposition and write

1
∏N

j=1

(

1− ρ jz
) =

N
∑

j=1

ρN−1
j

∏N
l=1,l, j

(

ρ j − ρl

)

1
1− ρ jz

From geometric series, we can also write 1/(1 − ρ jz) =
∑∞

k=0(ρ jz)k with |ρ jz| < 1⇒ |z| < 1/ρ j, to get

φQ (z) =
∞
∑

k=0
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It follows immediately from (1) that

fQ(k,N) =
N

∑

j=1

fQ j(k)X j (ρ,N) (7)

where fQ j(k) =
(

1− ρ j

)

ρk
j and

X j (ρ,N) = X j (ρ1, . . . , ρN ,N) = ρN−1
j

N
∏

l=1
l, j

1− ρl

ρ j − ρl

The probability functionfQ(k) is the linear combination
of the probability functionsfQ j(k) calculated at the same
buffer lengthk with the coefficientsX j (ρ,N). Note that it
must beρ j , ρl; ∀ j, l.

SinceφQ j (0) =
∑∞

k=0 fQ j(k) = 1, then from (6) also
φQ (0) = 1, i.e. the new probability function is already nor-
malized. From this we can get an interesting property of
the coefficientsX j (ρ,N)

N
∑

j=1

X j (ρ,N) = 1 (8)

This result will be useful in the next section.
In the special case in whichρ j = ρl; ∀ j, l, from (6) we

have

φQ (z) =
N

∏

j=1

1− ρ
1− ρz

=

(

1− ρ
1− ρz

)N

and by applying the negative binomial series we get

1

(1− ρz)N
=

∞
∑

k=0

(

N + k − 1
k

)

ρkzk

and then

φQ (z) =
∞
∑

k=0

{(

N + k − 1
k

)

ρk(1− ρ)N

}

zk

It follows immediately that

fQ(k,N) =

(

N + k − 1
k

)

(1− ρ)Nρk (9)

One can verify that (7) and (9) are equal to (2) when
N = 1, that is the new queue reduces to the M/M/1 queue.

4. N M/M /1 queues with shared and limited buffer

To set a limit on the buffer size of the multidimen-
sional queue, we must multiply by a normalization con-
stant so that the sum of the probabilities to be in the first
K + 1 states is equal to one, i.e the cumulative probability
Pr{Q ≤ K} = 1. This choice inplies that a packet leaves
the buffer only after the service completion. The case in
which a packet leaves the buffer when the service starts is
much more complicated and allows the buffer to have only
few additional free locations (from zero up toN locations),
i.e. N server registers are required but they are not shared.
With this, from (7) the cumulative probability is

Pr{Q ≤ K} =
K

∑

k=0

fQ(k,N) = 1−
N

∑

j=1

ρK+1
j X j (ρ,N) (10)

where the identity (8) has been applied. Now (7) must be
normalized by (10) and the final expression is

fQ(k,K,N) =
N

∑

j=1

fQ j(k)Z j (ρ,K,N) (11)
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Figure 2: Transfer probability forN = 1,2,3,4 andK = 1,4,64 in case of
equal utilizations. Ellipses in the plot group the same values of K together
while different values ofN are reported with different line styles.
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Figure 3: Normalized average queue length forN = 1,2,3,4,5 andK =
1,4,8,64 in case of equal utilizations. Ellipses in the plot group the same
values ofK together while different values ofN are reported with different
line styles.

where

Z j (ρ,K,N) =
X j (ρ,N)

1−
∑N

i=1 ρ
K+1
i Xi (ρ,N)

The probability function of the new queue is still a linear
combination as it was in (7) but with the new coefficients
Z j (ρ,K,N).

In the special case in whichρ j = ρl; ∀ j, l, from (9) we
have

fQ(k,K,N) =

(

N+k−1
k

)

ρk

∑K
k=0

(

N+k−1
k

)

ρk
(12)

One can verify that (11) and (12) are equal to (4) when
N = 1, i.e.Z j (ρ,K,N) reduces to the factor 1/(1− ρK+1)
and the new queue reduces to the M/M/1/K queue.

Thanks to the form of (11), the average queue length
follows from (3) straightforwardly

E [Q] =
K

∑

k=0

k fQ(k,K,N) =
N

∑

j=1

ρ j

1− ρ j
Z j (ρ,K,N)
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Figure 4: Transfer probability forN = 1,3,20 andK = 1,2,4,8,16,64 in
case of unequal utilizations. Numbers in the plot indicate the values ofK
while different values ofN are reported with different line styles.
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Figure 5: Normalized average queue length forN = 1,3,20 andK =
1,2,4,8,16,64 in case of unequal utilizations. Numbers in the plot indi-
cate the values ofK while different values ofN are reported with different
line styles.

The blocking probability is

pB =

N
∑

j=1

(

1− ρ j

)

ρK
j Z j (ρ,K,N)

and the transfer probability ispT = 1− pB.
Finally we notice that settingK → ∞ the function (11)

reduces to (7). In fact, since utilizations must be such that
0 < ρ j < 1;∀ j when the buffer is infinite due to obvi-
ous stability constraints, then limK→∞ ρK+1

j = 0. When the
buffer is finite, the system is stable even forρ j > 1.

Figures 2 and 3 report the transfer probabilitypT =

1− pB = 1− fQ(K,K,N) and the normalized average queue
lengthE [Q]/K respectively as a function of the total ag-
gregated traffic ρT defined in general asρT =

∑N
j=1 ρ j and

specialized here toρT = Nρ, i.e. all utilizations are equal
to ρ. The first fact to be observed is that whenK = 1
the curves don’t depend onN, i.e. only one packet can be
served regardless of the number of available servers as ex-
pected. Secondly, the transfer probability for a large buffer
size ispT ≈ 1 forρT < N as expected, i.e. a large queue can
transfer N flows with equal utilization without overloading
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Figure 6: Topology of the simple network for performance evaluation.

the buffer if each utilization is less or equal to the capacity
of one of the output links.

As a final remark, the normalized average queue length
in Figure 3 increases withN whenρT = N and its value
lies on the curveρ/(ρ + 1). This means that asN increases
and the flows share the buffer equally, the buffer average
occupation increases even if the capacity is not saturated
showing a clear aggregation effect of the adopted queue
model. More precisely, if the flows were independent, the
expected normalized average queue length would be 0.5
whenρ j = 1, j = 1, . . . ,N which is not the case when the
flows share a limited resource.

As a different example, Figures 4 and 5 report a case
in which utilizations are strongly unequal because they are
defined asρ j = ρT ( j/

∑N
l=1 l). In this case, the aggregation

effect is clearly present in the transfer probability which is
less than one beforeρ is approximately equal toN, that
is since the servers are not used equally then the blocking
probability is higher than in the previous case. This situa-
tion is confirmed in Figure 5 for theN = 3 case by the fact
that the queue saturates forρT < N, i.e. only a few flows
occupy most of the buffer so that whenρT = N the buffer
has already been saturated by the high-rate flows causing
losses to happen also for the low-rate flows.

5. Numerical example

Figure 6 shows the network topology we propose as a
simple numerical example. Two sourcesS 1, S 2 generate
8 flows that pass through 3 intermediate nodesN1,N2,N3
and reach 4 destination nodesD1,D2,D3,D4. The flows
are: S1→ N1→ D1, S1→ N1→ N3→ D2, S1→ N1→
N3→ D3, S1→ N1→ N2→ D4, S2→ N2→ N3→ D1,
S2→ N2→ N3→ D2, S2→ N2→ N3→ D3, S2→ N2
→ D4. Whith this, the intermediate nodes are differently
loaded and have a different number of output links.

Figure 7 shows the output rate of each link of interest as
a function of the buffer size where each node has the same
buffer size, each output link has the same capacity and each
source generates flows with the same rate. The output rate
is calculated according to the conservation of flow princi-
ple and the transfer probability. With the chosen output link
capacity of 3 Mbps and source rate of 500 Kbps, the system
is far from the loss boundary. Depending on the number of
flows passing trough a certain link, the 3 rate levels of 0.5
Mbps, 1 Mbps and 1.5 Mbps can be recognized for a suf-
ficient buffer size. At lowerK, the flows experience losses
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Figure 7: Link rate versus the buffer size for the network in Figure 6 where
each source rate is 500 Kbps and each link capacity is 3 Mbps.
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and link rates are different even if they are composed by the
same number of flows.

Figure 8 shows the input, output and lost rates for an
insufficient link capacity of 1 Mbps. Additionally, due to
losses happened in nodes N1 and N2, the input rate of node
N3 is already lower than its maximum value.
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