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Abstract—In wireless multi-hop networks, a source and

a destination usually have some candidate paths between

them, and the communication quality depends on the selec-

tion of a multi-hop path from the candidates. In this paper,

we analyze the quality of a path using a metric called Ex-

pected Transmission Count (ETX) in a line network where

nodes are located at constant intervals. We theoretically

and exactly analyze the route ETX of Optimum Routing

(OR), which minimizes the route ETX, in the network as

well as those of Shortest Path Routing (SPR) and Longest

Path Routing (LPR). We also approximately analyze the

route ETX of OR in a two-dimensional network with lat-

tice structure. We compare the ETXs in these networks

with those in random networks.

1. Introduction

In wireless multi-hop networks [1, 2], a source node

sends data to a destination node through a multi-hop path

that consists of some intermediate nodes as relay nodes.

The multi-hop path is selected by the routing algorithm

used in the network. The shortest path algorithm is often

used as a routing algorithm; however, it tends to select long

links, which have a low reliability and lead to a poor com-

munication quality [3]. In [4], the authors proposed a path

metric called Expected Transmission Count (ETX), which

is defined as the expected total number of transmissions re-

quired to successfully send a packet from the source to the

destination, and showed that the communication quality is

improved by selecting a path which has the minimum ETX.

Other than ETX, several metrics of quality of a path have

been proposed such as Per-hop Round Trip Time (RTT) [5],

Medium Time Metric (MTM) [6], and Expected Transmis-

sion Time Metric (ETT) [7].

In [8, 9], we theoretically analyzed the mean ETX of a

path selected by three routing algorithms, namely Longest

Path Routing (LPR), Shortest Path Routing (SPR), and Op-

timum Routing (OR), which minimizes the ETX, in a one-

dimensional wireless multi-hop network where nodes are

randomly distributed based on a Poisson process. In the

analysis of OR, however, we used an approximate method

because the direct analysis of OR is not easy if nodes are

randomly distributed. Also, it is more difficult to analyze

OR in the two-dimensional network where nodes are ran-

domly distributed.

In this paper, we try to analyze OR in two kinds of net-

works to overcome the above difficulties. First, we consider

a simple one-dimensional network where nodes are located

at constant intervals on a line, and exactly analyze the route

ETX of OR in this network. At the same time, we analyze

the route ETX of LPR and SPR in this network. Second,

we apply the results of the first analysis to an approximate

analysis of the route ETX of OR in a lattice network as

an extension to analysis in two-dimensional networks. We

compare the numerical results of ETX in these networks

with the numerical results and simulation results in the net-

works where nodes are randomly distributed to find possi-

bility to apply these results to evaluation of the mean route

ETX in random networks.

2. Definitions and Assumptions

Suppose that S and D are source and destination nodes,

respectively, and that the distance between S and D equals

ℓ. Let d be the communication range of a node. Namely,

two nodes have a direct link if the distance between them is

smaller than or equal to d, and they do not have a direct link

otherwise. Let u(z) be the function of ETX of a link, where

z is the length of the link. We assume that u(z) = ∞ if

z > d. We also assume that u(z) is a convex monotonically

increasing function, and u(0) > 0. Route ETX is defined as

the sum of the ETXs of all links in the route.

As mentioned above, we consider two kinds of networks:

One is a one-dimensional line network where nodes are lo-

cated at constant intervals with distance a1. Denote this

network by Network A. Suppose that S is at x = 0, and D

is at x = ℓ on the x axis, where ℓ is multiple of a1, which

is a positive constant, and that relay nodes are located at

x = a1, x = 2a1, ..., x = ( ℓ
a1
− 1)a1. The other is a two

dimensional network where nodes are located with lattice

structure with lattice constant a2. Denote this network by

Network B. Suppose that S is at (0, 0), and D is at (ℓx, ℓy),

where both ℓx and ℓy are multiples of a2, and
√

ℓ2x + ℓ
2
y = ℓ.

Suppose that relay nodes are located at (x, y), where x = 0,

a2, 2a2, ..., ℓx
a2

a2, and y = 0, a2, 2a2, ...,
ℓy

a2
a2.

To compare the above two networks with random net-

works, we consider the following random networks for ref-
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erence. Network C is a network where nodes are distributed

based on a Poisson process with intensity λ1 on a line. Net-

work D is a network where nodes are distributed based on

a Poisson process with intensity λ2 on a plane. Examples

of Network A, B, C, and D are shown in Fig. 1(a), (b), (c),

and (d), respectively.

In Network A, we exactly analyze the route ETX of the

following three routing algorithms. Longest Path Routing

(LPR) selects all nodes between S and D as relay nodes.

As a result, LPR maximizes the number of hops. Short-

est Path Routing (SPR) selects the node nearest to D and

within d of S as a first relay node, and it selects the node

nearest to D and within d of the first relay node as a second

relay node. In the same manner, the multi-hop path to D

is constructed. The path includes the minimum number of

relay nodes. Optimum Routing (OR) selects a path which

has the minimum route ETX from all candidate paths. We

compare the numerical results of the analyses in Network A

with those of the mean route ETX of the three algorithms

in Network C. The analyses in Network C are shown in

[8, 9]. Note that the analysis of OR in Network C is done

approximately.

In Network B, we analyze the route ETX of OR approx-

imately based on the analysis in Network A. We also com-

pute the route ETX of Shortest Path with Minimum ETX

Routing (SPMR), which selects a path with the minimum

ETX from all shortest paths, by computer simulation.

Let UA,L, UA,S , and UA,O be the route ETX of LPR, SPR,

and OR in Network A, respectively. Let UB,S and UB,O be

the route ETX of SPMR and OR in Network B, respec-

tively. Let UC,L, UC,S , and UC,O be the mean route ETX of

LPR, SPR, and OR in Network C, respectively. Let UD,S

and UD,O be the mean route ETX of SPMR and OR in Net-

work D, respectively.

3. Analysis of Network A

In this section, we theoretically and precisely analyze

UA,L, UA,S , and UA,O. First, we consider UA,L. LPR selects

a route consisting of ℓ
a1

links whose lengths are equal to a1.

Therefore, we have

UA,L =
ℓ

a1

u(a1). (1)

Second, we consider UA,S . Let ℓmax be the maximum

length of a link which can exist in Network A. Because the

maximum transmitting range is d, and the length of every

pair of two nodes in Network A is a multiple of a1, ℓmax =
⌊

d
a1

⌋

a1. Hence, SPR selects a route consisting of
⌈

ℓ
ℓmax

⌉

− 1

links whose lengths are equal to ℓmax and one link whose

length is equal to ℓ −
(⌈

ℓ
ℓmax

⌉

− 1
)

ℓmax. Therefore,

UA,S =

(⌈

ℓ

ℓmax

⌉

− 1

)

u(ℓmax) + u

{

ℓ −
(⌈

ℓ

ℓmax

⌉

− 1

)

ℓmax

}

. (2)

Third, we consider UA,O. We have the following theo-

rem:

0

S

Transmitting range : d

D

a1 l=8a12a1 3a1 4a1 5a1 6a1 7a1

(a) Network A.

S(0,0)

D(5a2,2a2)

d

a2

a2

(b) Network B.

0

S
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D

l

(c) Network C.

S Dd

l

(d) Network D.

Figure 1: Network models.

Theorem 1. Assume that u(z) is a convex monotonically

increasing function. Define the following constants:

ℓ1 =

⌊

ℓ

ka1

⌋

a1, ℓ2 =

⌊

ℓ

ka1

⌋

a1 + a1.

Let r1 be the k-hop route that consists of at most two kinds

of links whose lengths are ℓ1 and ℓ2. r1 is uniquely de-

termined, and it has the minimum route ETX in all k-hop

routes.

Proof. First, we prove the uniqueness of r1. Let n1 and

n2 be the numbers of links whose lengths are ℓ1 and ℓ2,

respectively. Because r1 is a k-hop route, n1+n2 = k. Also,

because the sum of lengths of all links in r1 is ℓ, n1ℓ1 +

n2ℓ2 = ℓ. From these equations, n1 and n2 are uniquely

determined and

n1 = k −
(

ℓ

a1

− k

⌊

ℓ

ka1

⌋)

, n2 =
ℓ

a1

− k

⌊

ℓ

ka1

⌋

.

Second, we prove that r1 has the minimum route ETX in

all k-hop routes. Assume that the k-hop route r2 other than

r1 has the minimum ETX in all k-hop routes. Suppose that

r2 consists of k links whose lengths are ℓ′
1
, ℓ′

2
, ..., ℓ′

k
, where

ℓ′
1
≤ ℓ′

2
≤ ... ≤ ℓ′

k
. From the assumption, ℓ′

1
< ℓ1 or ℓ′

k
> ℓ2.

If ℓ′
1
< ℓ1, then ℓ′

k
> ℓ1 because ℓ′

1
+(k−1)ℓ1 < ℓ. If ℓ′

k
> ℓ2,

then ℓ′
1
< ℓ2 because ℓ′

k
+(k−1)ℓ2 > ℓ. Hence, ℓ′

k
−ℓ′

1
≥ 2a1.

Then u(ℓ′
1
+a1)+u(ℓ′

k
−a1) < u(ℓ′

1
)+u(ℓ′

k
) because u(z) is a
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convex monotonically increasing function. Let r3 be the k-

hop route consisting of k links whose lengths are ℓ′
1
+a1, ℓ′

2
,

ℓ′
3
, ..., ℓ′

k−1
, ℓ′

k
−a1. r3 is a k-hop route and has the route ETX

smaller than that of r2, which is a contradiction. Therefore,

r1 has the minimum route ETX in all k-hop routes. �

From Theorem 1, we have

UA,O = min
⌈

ℓ
ℓmax

⌉

≤k≤ ℓ
a1

{n1u(ℓ1) + n2u(ℓ2)}. (3)

4. Analysis of Network B

In this section, we approximately analyze UB,O because

it is difficult to precisely analyze UB,O. From Theorem 1,

we expect that the k-hop route that consists of at most four

kinds of links whose vectors are ~ℓ3, ~ℓ4, ~ℓ5, and ~ℓ6 approxi-

mately minimizes the route ETX in all k-hop routes, where

~ℓ3 =

(⌊

ℓx

ka2

⌋

a2,

⌊

ℓy

ka2

⌋

a2

)

, (4)

~ℓ4 =

(⌊

ℓx

ka2

⌋

a2,

⌊

ℓy

ka2

⌋

a2 + a2

)

, (5)

~ℓ5 =

(⌊

ℓx

ka2

⌋

a2 + a2,

⌊

ℓy

ka2

⌋

a2

)

, (6)

~ℓ6 =

(⌊

ℓx

ka2

⌋

a2 + a2,

⌊

ℓy

ka2

⌋

a2 + a2

)

. (7)

There can be many k-hop routes consisting of ~ℓ3, ~ℓ4, ~ℓ5,

and ~ℓ6. Here, we choose a k-hop route with a minimum

number of ~ℓ6 from the candidates because ~ℓ6 is the longest

in the four vectors and cause an increase of ETX. Denote

this route by r4. Let n3 be the number of ~ℓ3 included in r4.

In the same manner, let n4, n5, and n6 be those of ~ℓ4, ~ℓ5,

and ~ℓ6, respectively. We can determine r4 uniquely and we

have

n3 = k − n4 − n5 − n6, (8)

n4 =
ℓy

a2

− k

⌊

ℓy

ka2

⌋

− n6, (9)

n5 =
ℓx

a2

− k

⌊

ℓx

ka2

⌋

− n6, (10)

n6 = max

{

0,
ℓx + ℓy

a2

− k

⌊

ℓx

ka2

⌋

− k

⌊

ℓy

ka2

⌋

− k

}

.(11)

We compute the route ETX of r4 for
⌈

ℓ
d

⌉

≤ k ≤ ℓx+ℓy

a2
and

use the smallest one, denoted by U′
B,O

, as an approximation

to UB,O. Then

U′B,O = min
⌈ ℓd ⌉≤k≤ ℓx+ℓy

a2

6
∑

i=3

niu

(
∣

∣

∣

∣

~ℓi

∣

∣

∣

∣

)

. (12)

Note that if a2 = a1, and ℓx = 0 or ℓy = 0, then U′
B,O
=

UA,O.
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Figure 2: Function of link ETX u(z).

5. Numerical Results

We use u(z) in Fig. 2 as a function of the ETX of a link.

We compute this function using the path-loss model in [10].

Also, we set d to 23.

Figure 3 shows the numerical results of UA,L, UA,S , and

UA,O together with the results of UC,L, UC,S , and UC,O to

compare the relay nodes at constant intervals with those at

random intervals. For comparison under the same condi-

tion, we set λ1 =
1
a1

so that the number of nodes per unit

length in Networks A and C are the same. In Fig. 3, the hor-

izontal axis is ℓ. Also, λ1 = 0.15 in Fig. 3(a), and λ1 = 0.5

in Fig. 3(b).

From Fig. 3, we can confirm that OR significantly re-

duces the route ETX compared with LPR and SPR for large

λ1 while the route ETX of each algorithm is close to each

other for small λ1 in both Networks A and C. We can also

confirm that the difference between UA,O and UC,O tends to

be smaller as λ1 increases, and UA,O is close to UC,O for a

large λ1.

Figure 4 shows the numerical results of U′
B,O

with the

simulation results of UB,O to verify the relation between the

numerical results of Eq. (12). In this figure, we also show

the numerical results of UA,O and the simulation results of

UD,O to observe the effects of network structure on the route

ETX. We also show UB,S and UD,S to observe how much

OR can reduce ETX compared with other routing methods.

We set the parameters as follows: a1 = a2, λ2 =
1

a2
2

, and

ℓx = ℓy =
ℓ√
2
. In Fig. 4, the horizontal axis is ℓ. Also,

λ2 = 0.0025 in Fig. 4(a), and λ2 = 0.04 in Fig. 4(b).

In Fig. 4, the numerical results of U′
B,O

is close to the

simulation results of UB,O. Then we can confirm that the

analysis of U′
B,O

is valid. We can also confirm that OR

greatly reduces the route ETX compared with SPMR in

Network B and D especially when λ2 is large. For a small

density of nodes, UB,O is close to UD,O while it is quite dif-

ferent from UA,O. For a large density of nodes, UB,O is close

to both UD,O and UA,O. From these results, it is considered

that U′
B,O

can be used as an approximation to not only UB,O

but also UD,O. Also, for a large density of nodes, even UA,O

can be used as an approximation to UB,O and UD,O.
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Figure 3: Route ETX in Network A and mean route ETX

in Network C.

6. Conclusions

We theoretically and exactly analyzed the route ETX of

Longest Path Routing, Shortest Path Routing, and Opti-

mum Routing in a line network where nodes are located

at constant intervals. We approximately analyzed the route

ETX of Optimum Routing in a lattice network. From the

numerical results and simulation results, we showed that

this approximation was valid. We compared the route ETX

in the above networks with that in random networks. From

the comparison, we showed that we can approximately

compute the route ETX in a two-dimensional random net-

work in the same manner as that in the lattice network. We

also showed that we can approximately compute it by the

exact method for the line network for a large density of

nodes.
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