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Abstract—Self-organizing indicates the system produc-
ing an own structure. Especially, the map system is called
the self-organizing map (SOM). SOM can map to the low
dimension by which the adjacency relation of the multidi-
mensional data is maintained in nonlinearly. This method
has been focused on because of the effectiveness for clus-
tering, information compression, and visualization. On the
other hand, since the SOM tends to compress the distance
between data, the mapped data does not guarantee the ac-
tual distance relationship of the input space. Therefore,
the problem is that an actual distance relationship in the
input space is not expressed in the output space. In this
paper, to solve the above problem, we propose the multi-
dimensional lattice data addition learning model by which
the concept of the neighborhood uniting is introduced to
the study of the conventional self-organizing map.

1. Introduction

Recently, there are huge amount of information of elec-
tronic data due to the development of information pro-
cessing technology. However, there is a limitation in the
amount of manually treatable information, and it is difficult
to get information and knowledge from such a large amount
of data. Data mining is technique for getting profitable in-
formation from among data. Data mining is defined as ”the
nontrivial extraction of implicit, previously unknown, and
potentially useful information from data”. It is usually used
by businesses, intelligence organizations, and financial an-
alysts, but is increasingly used in the sciences to extract in-
formation from the enormous data sets generated by mod-
ern experimental and observational methods.

The SOM was first introduced by the Teuvo Kohonen[1].
The SOM creates prototype vectors which have high di-
mensional value and make them represent the same di-
mensional input data by learning process considering Eu-
clidean distances between input data and prototype vectors.
Since each prototype vectors have a low dimensional out-
put space grid, the SOM can visualize high-dimensional
data into a low-dimensional spatial grid. This dimensional-
ity reducing mapping of the SOM makes the inter relation
among the data points and clustering tendency perceptible.
But, the problem of conventional SOM is compressing the
blank space remarkably. Therefore, an actual distance rela-
tionship in the input space is not expressed in the mapped

map.
In this paper, to solve the above problem, we propose

the multi-dimensional lattice data addition learning model
by which the concept of the neighborhood uniting is intro-
duced to the study of the conventional SOM. The purpose
is to carry data mining with good accuracy.

2. Visualizing Algorithm

The SOM is usually consisted of two dimentional array
of neurons as shown in Fig. 1. A prototype vector associ-
ated with each neuron is described by

ωi = [ω1i , ωi2, · · ·ωin]T , (1)

wherem is the dimension of the input vectors. At each
step, input vectorx is drawn randomly and is presented to
the network. This input vector is compared with all the
prototype vectors. The nearest prototype vector is called a
best matching unit (BMU).
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Figure 1: Concept of the SOM

A grid number of BMUc obtained by the Euclidean dis-
tance between the input vectorx and weight of prototype
vectorωi is expressed by,

c = argmin‖ x− ωi ‖ . (2)

The neighborhood size function which is a time decay
function is defined to decide the range of learning units.
One example of neighborhood size functionσ(t) is given
by;
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σ(t) = do(1− t/T), (3)

wheredo is a starting width of neighborhoods,t is current
time step, andT is total learning times, respectively. Then
the SOM updates the prototype vectors within the neigh-
borhoods. The prototype vectorωi is updated by

ωi(t + 1) = ωi(t) + hci(t)[x(t) − ωi(t)], (4)

wherehci is the time decreasing learning function. A typi-
cal smooth neighborhood function is the Gaussian function
described by,

hci(t) = α(t)exp(
− ‖ rc − r i ‖2

2σ(t)2
), (5)

whereα(t) is the learning rate function,‖ rc − r i ‖ is the
distance between the winner neuronc, and the neuroni.
The learning processes consist of winner selection by equa-
tion (1) and adaptation of the prototype vectors by equa-
tion (3). After the training has been completed, the map
should be topologically ordered, so that similar data items
are mapped onto nearby map units. Then, the visualiz-
ing process must be carried out in order for the underlying
structure of data to be perceived.

3. Mapping

The mapping is worked to decide the unit of the output
space to each input data after the learning algorithm ends.
Although the more the number of units increases, the more
feature of input data can be mapped in high probability,
while computation time is increased. Hence, to solve this
problem, we used the method of ranking scheme.

In primary method, the SOM projection procedure con-
tinues with directly finding the centroid of this spatial re-
sponse, where the data sample is then mapped. In order to
enhance the visual representation, a ranking scheme is used
to visualize different degree of cluster membership. First,
it is required to decide the number of units taken into the
account. We set this parameter asR. After that, put order
label on each units considering with a distance to sample
data which is given by:

0 for the closest unit.
1 for the second closest unit.
R for Rth closest unit.
Then, the coordinateP = (x1, x2)T of output map is ob-

tained by

P =

∑R−1
i=0 (

∑R−1
j=0 d j − di)W i

∑R−1
i=0

∏R−1
i=0 d j

di

, (6)

wheredi is Euclidean distance between input vector and
weight,W i = (y1, y2)T is coordinate of thei-th ranked unit,

respectively. Continue to calculate the equation above for
all the sample data. Then sample data is mapped on coor-
dinateP of the output map.

4. Additional learning

4.1. Introduction of additional learning

The problem of conventional SOM is compressing the
blank space remarkably. Therefore, an actual distance rela-
tionship in the input space is not expressed in the mapped
map. In this paper, to solve the above problem, we propose
the multi-dimensional lattice data addition learning model
by which the concept of the neighborhood uniting is intro-
duced to the study of the conventional SOM.

Image of problem of conventional method is shown in
Fig. 2. The left figure shows the data distribution in the
input space and the right shows the data distribution after
maps. 1 and 2 represent the sample of the cluster and there
are two clusters in those figures.

Figure 2: Image of output of conventional method

As shown in Fig. 2, it is understood that the blank space
is compressed, and the distance between clusters of the in-
put space is not reflected. Our purpose is to improve Fig. 2
to that of Fig. 3.

Figure 3: Image of output of proposed method

The proposed method is a model to add not only to input
data but also to lattice data of the same dimension as input
space and to study them.

This method is classified into 3 operations for the learn-
ing of SOM, the generation of multi-dimensional lattice
data and the calculation of neighborhood uniting in input
space.
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4.2. Generation of multi-dimensional lattice data and
neighborhood uniting in input space

For m dimension input data, the multi-dimensional lat-
tice points ofn− 1 capitation side is considered. The num-
ber of the points is

nm (= K(n,m)) . (7)

Fig. 4 is an example ofK(3.3).

Figure 4: K(3,3)

Although, the answer of equation (7) increases in expo-
nential when the dimension is increased. Therefore, when
number of dimension increases, multi-dimensional lattice
point increases remarkably in input data, and it becomes as
a map of a lot of blank space in the output space.

Hence, so as not to consider the needless multi-
dimensional lattice data, the neighborhood uniting with in-
put data is considered to the generated multi-dimensional
lattice data by the input space. Discriminant is applied to
each multi-dimensional lattice data. DiscriminantD is de-
fined as

D =

{
1 i f d < d0(1− t

tmax
)

0 otherwise
, (8)

where thed is the distance between a multi-dimensional
point data and the input point.tmax is the total leaning num-
ber, t is the present leaning number andd0 is the constant.
Equation (8) is applied to each multi- dimensional lattice
data. When the value ofD is one, the SOM learning is
completed. The image of the time variation of the neigh-
borhood uniting is shown in Fig. 5.

Figure 5: Image of neighborhood uniting

5. Simulation

In order to demonstrate the efficiency of proposed
method, we present the following experiments using Iris
Plants data set. The Iris data set is a widely used bench-
mark for pattern recognition. It contains three classes; Iris-
setosa, Iris-versicolor and Iris-virginica. In fig. 6 and fig.
7, Iris-setosa, Iris-versicolor and Iris-virginica are respec-
tively represented by ”1”, ”2” and ”3”.

The error rate is required by comparing the distance
within the cluster center of gravity in input space and out-
put space.

In the first experiment, the number of input data is 100
and the number of lattice data is 81. The effectiveness
of the multi-dimensional lattice data was confirmed under
these conditions. These results are shown in the Fig. 6,
Fig. 7 and Table 1. We confirmed that the cluster has had
clearly divided by comparing Fig. 6 to Fig. 7. Moreover,
the error rate has decreased as shown in Table 1.

Next, we confirmed that the neighborhood uniting in
the input space was effective when the number of parti-

Figure 6: Output by conventional method

Figure 7: Output by proposed method
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tions of the multi-dimensional lattice data was increased.
n was changed between 2 to 6 for Iris data set with four-
dimensional variable, and error rate were compared by the
presence of the neighborhood uniting. These results are
shown in the Fig. 8, Fig. 9 and Table 2. These graphs are
result of each output atK(5,4). It can be confirmed that the
extra blank space has disappeared, and the error rate has
decreased by comparing Fig. 8 to Fig. 9. The error rate has
decreased as the number of lattice was increased as shown
in Table 2. On the whole, the error rate is few when neigh-
borhood uniting is done. Moreover, computing time can be
shortened.

Table 1: Distance ratio between cluster center of gravity
1 and 2 2 and 3 3 and 1 Error(%)

Theoretical 1.000 0.580 1.545 —
Conventional 1.000 1.344 2.344 67.000

Proposed 1.000 0.367 1.367 16.800

Figure 8: Output using un-neighborhood uniting

Figure 9: Output using neighborhood uniting

Table 2: Distance ratio between cluster center of gravity

Number of
lattice 1 and 2 2 and 3 3 and 1 Error(%)
points

Theoretical figure — 1.000 0.584 1.538 —
K(2,4) 1.000 0.979 1.829 29.80
K(3,4) 1.000 0.535 1.451 6.10

un-neighborhood K(4,4) 1.000 0.595 2.344 31.40
uniting K(5,4) 1.000 0.789 2.344 18.00

K(6,4) 1.000 1.369 2.344 48.30
K(2,4) 1.000 1.026 1.731 29.30
K(3,4) 1.000 0.813 1.545 13.90

neighborhood K(4,4) 1.000 0.817 1.411 16.10
uniting K(5,4) 1.000 0.699 1.623 8.70

K(6,4) 1.000 0.658 1.553 4.60

6. Conclusion

In this paper, we proposed multi-dimensional lattice data
addition learning model. This proposed model is introduc-
tion of the concept of the neighborhood uniting with input
data for the study of the conventional SOM. The problem is
that the actual distance relationship in the input space is not
expressed in the output space was solved by this method.
In addtion, mapping the distance relationship of accuracy
good input data even if remarkably the amount of multi-
dimensional lattice data existed for input data became pos-
sible by introduced the neighborhood uniting.
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