
A New Working Set Selection for Decomposition-Type
SVM Learning Algorithms

Norikazu Takahashi†, Masashi Kuranoshita‡, Yusuke Kawazoe‡, Jun Guo† and Jun’ichi Takeuchi†

†Faculty of Information Science and Electrical Engineering, Kyushu University
‡Graduate School of Information Science and Electrical Engineering, Kyushu University

744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
Email: norikazu@csce.kyushu-u.ac.jp

Abstract—Decomposition methods are efficient itera-
tive techniques for solving large quadratic programming
(QP) problems arising in support vector machines. In each
step, the decomposition method chooses a set of a small
number of variables called the working set and then solves
the QP problem with respect to those selected variables. In
this paper, we propose a new working set selection method
based on the conjugate gradient method and evaluate its ef-
fectiveness by using benchmark data sets on both pattern
classification and regression problems.

1. Introduction

Since the training of a support vector machine (SVM)
[1] is formulated as a quadratic programming (QP) prob-
lem, computational cost becomes very high for large train-
ing samples. In order to overcome this difficulty, decompo-
sition methods have been proposed by several researchers
[2]-[5]. A decomposition method tries to find an optimal
solution of the original QP problem by executing the fol-
lowing two operations iteratively: 1) selecting a set of a
small number of variables called the working set, and 2)
solving the QP problem with respect to the selected vari-
ables. Since each subproblem is small, decomposition
methods spend much less amount of memory than the tra-
ditional QP solvers. In addition, it is often the case that
even though sufficiently large amount of memory is avail-
able, decomposition methods are faster than the traditional
QP solvers.

Each decomposition method is characterized by three
components: how to select the working set, how to solve
subproblems, and the termination criterion. For example,
in the sequential minimal optimization (SMO) algorithm
proposed by Platt [2] only two variables are selected in each
step and subproblems are solved analytically. On the other
hand, in SVMlight proposed by Joachims [3] a fixed num-
ber, which can be any even number less than the number of
training samples, of variables are selected for the working
set in a systematic way based on the steepest descent (SD)
method, and subproblems are solved by using one of the
traditional QP solvers.

In this paper, we concentrate our attention on how to se-
lect the working set, which is the most important factor

to determine the computation time of the decomposition
method, and propose a novel working set selection method
based on the conjugate gradient (CG) method. We will
first show that the decomposition method with the proposed
working set selection always stops within a finite number
of iterations after finding an optimal solution. We will then
show experimental results on several benchmark data sets
from which we see that the proposed method is sometimes
much faster than SVMlight.

2. QP Problems in SVM Learning

2.1. Pattern Classification

Let {(xi, yi)}li=1 be the given training samples, where xi ∈
Rn and yi ∈ {1,−1} represent the i-th pattern and its class
label, respectively. Then the training of an SVM leads to
the following QP problem [1].

Problem 1 Find α = [α1, · · · , αl]T which minimizes

W(α) =
1
2

l∑
i=1

l∑
j=1

αiα jyiy jK(xi,x j) −
l∑

i=1

αi (1)

under constraints:
l∑

i=1

αiyi = 0 (2)

0 ≤ αi ≤ C, i = 1, 2, . . . , l (3)

where K : Rn × Rn → R is a kernel function and C is a
positive constant.

Throughout this paper, we will assume both C and the
kernel function K are fixed a priori. We will also assume
that K satisfies Mercer’s condition. It is thus guaranteed
that Problem 1 is a convex QP problem.

As the kernel function satisfying Mercer’s condition,
RBF (radial basis function) kernel defined by

K(x,x′) = exp
(
−‖x − x′‖2

2σ2

)
(4)

and the polynomial kernel defined by

K(x,x′) = (xT x′ + 1)p (5)

2007 International Symposium on Nonlinear Theory and its
Applications
NOLTA'07, Vancouver, Canada, September 16-19, 2007

- 280 -



are well known and widely used in SVMs.
Let α∗ =

[
α∗1, α

∗
2, . . . , α

∗
l

]T
be any optimal solution of

Problem 1. Then the decision function of the SVM is ex-
pressed as

f (x) = sgn

 l∑
i=1

α∗i yiK(xi,x) + b∗
 (6)

where

b∗ = y j0 −
l∑

i=1

α∗i yiK(xi,x j0 )

and j0 is any j satisfying 0 < α∗j < C. Pattern x is classified
into Class 1 and Class −1 if f (x) = 1 and f (x) = −1,
respectively.

Since Problem 1 is a QP problem, a feasible solution is
optimal iff Karush-Kuhn-Tucker (KKT) condition is satis-
fied. Let us define two sets Iup(α) and Ilow(α) as

Iup(α) = {i |αi < C, yi = 1} ∪ {i |αi > 0, yi = −1}
Ilow(α) = {i |αi < C, yi = −1} ∪ {i |αi > 0, yi = 1}

and the function Fi(α) as

Fi(α) = yi
∂W(α)
∂αi

= yi

 l∑
j=1

α jyiy jK(xi,x j) − 1

 . (7)

Then the KKT condition can be rewritten as follows [4]:

min
i∈Iup(α)

Fi(α) = max
i∈Ilow(α)

Fi(α) (8)

2.2. Regression

Suppose that the relationship between two variables x ∈
Rn and y ∈ R is expressed as y = f ∗(x) where f ∗(x)
is a certain nonlinear function. Regression problem is
to estimate the function f ∗(x) from given l training sam-
ples (x1, y1), (x2, y2), . . . , (xl, yl) where yi usually contains
noise independent of xi.

Basic principle of SVMs for pattern classification can
easily be applied to regression and this technique is called
the support vector regression (SVR). When we use the ε-
insensitive loss function defined by

ξi =

0, if |yi − f (xi)| ≤ ε
|yi − f (xi)| − ε, otherwise

SVR is formulated as the following QP problem [1].

Problem 2 Find α = [α1, α2, . . . , α2l]T which minimizes

W(α) =
1
2

l∑
i=1

l∑
j=1

(αi − αi+l)(α j − α j+l)K(xi,x j)

−
l∑

i=1

yi(αi − αi+l) + ε
l∑

i=1

(αi + αi+l) (9)

under constraints:

l∑
i=1

(αi − αi+l) = 0 (10)

0 ≤ αi ≤ C, i = 1, 2, . . . , 2l (11)

3. Decomposition Methods

In this section, we focus our attention on the decomposi-
tion method for Problem 1, and explain the basic algorithm
and the termination criterion. The following techniques can
be easily applied to Problem 2.

3.1. Basic Algorithm of Decomposition Method

The algorithm of a general decomposition method is ex-
pressed as follows:

Algorithm 1
Step 1: Set α(0) = 0 and k = 0.
Step 2: If α = α(k) satisfies the termination criterion then
stop.
Step 3: Choose q (≤ n) elements i1, i2, . . . , iq from the set
L = {1, 2, . . . , l} and set LB(k) = {i1, i2, . . . , iq}.
Step 4: Find α = [α1, α2, . . . , αl]T which minimizes W(α)
under the constraints (2), (3) and αi = αi(k), ∀i ∈ LN where
LN(k) = L\LB(k).
Step 5: Let α∗ be an optimal solution of the QP subproblem
in Step 4 and set α(k + 1) = α∗.
Step 6: Add 1 to k and go to Step 2.

For example, SMO algorithm is a decomposition method
with q = 2 and thus QP subproblems can be solved analyti-
cally. In general, q is set to an integer greater than or equal
to 2 and QP subproblems are solved by using one of tra-
ditional QP solvers. Also, as the termination criterion, a
relaxed version of the optimality condition (8) is used as
described in the next subsection.

3.2. Termination Criterion of Algorithm 1

It is apparent that α(k) in Algorithm 1 belongs to the fea-
sible region of Problem 1 for all k and that W(α(k)) is non-
increasing with respect to k. Hence the value of W(α(k))
converges to a certain constant. However, this does not im-
ply that α(k) converges to an optimal solution. In fact, if
the working set selection in Step 3 is not appropriate then
α(k) may not change. We will show below some defini-
tions introduced in [5] and a new convergence theorem for
Algorithm 1.

Definition 1 ([5]) The condition

min
i∈Iδup(α)

Fi(α) > max
i∈Iδlow(α)

Fi(α) − τ (12)

is called the (τ, δ)-optimality condition, where

Iδup(α) = {i |αi ≤ C − δ, yi = 1} ∪ {i |αi ≥ δ, yi = −1}
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Iδlow(α) = {i |αi ≤ C − δ, yi = −1} ∪ {i |αi ≥ δ, yi = 1}
τ is any positive number, and δ is any positive number
smaller than C/2. A feasible solution α is called a (τ, δ)-
optimal solution if it satisfies (12).

Definition 2 ([5]) Given a feasible solution α, a pair of in-
dices (i, j) satisfying i ∈ Iδup(α), j ∈ Iδlow(α), and Fi(α) ≤
F j(α) − τ is called a (τ, δ)-violating pair at α.

Theorem 1 Suppose that the (τ, δ)-optimality condition is
used as the termination criterion of Algorithm 1. Suppose
also that there exists a nonnegative integer M such that for
any k there exists an r satisfying k ≤ r ≤ k + M and the
condition that LB(r) contains a (τ, δ)-violating pair at α(r).
Then Algorithm 1 stops within a finite number of iterations
for any τ > 0 and any δ ∈ (0,C/2).

We will omit the proof of Theorem 1 because it is similar
to the proof of Theorem 4 in [5].

4. Proposed Working Set Selection Method

We now propose a novel working set selection based on
the conjugate gradient (CG) method. The CG method is an
effective technique for solving QP problems without con-
straints. In particular, if the objective function is strictly
convex then the CG method converges to the unique opti-
mal solution after l steps, where l is the number of vari-
ables. Let h(α) be the objective function. Then the search
direction d(k) at the k-th step of the CG method is deter-
mined by

d(k) = −∇h(α(k)) + β(k)d(k − 1), k = 0, 1, 2, . . .

where β(k) is determined by

β(0) = 0, β(k) =
||∇h(α(k))||2
||∇h(α(k − 1))||2 , k = 1, 2, . . .

By introducing this idea to the decomposition method,
we can obtain the following algorithm.

Algorithm 2
Step 1: Set k = 0, α(0) = 0 and m(0) = 0.
Step 2: If α = α(k) satisfies the (τ, δ)-optimality condition
then stop.
Step 3: Compute β(k) by

β(k) =

0, if m(k) = 0
||∇W(α(k))||2
||∇W(α(k−1))||2 , if 1 ≤ m(k) ≤ l − 1

Step 4: Compute d(k) = −∇W(α(k)) + β(k)d(k − 1).
Step 5: Find LB(k) by Steps 5.1 to 5.4.
Step 5.1: Set LB(k) = ∅.
Step 5.2: Compute yidi(k) for all i and sort {1, 2, . . . , l} ac-
cording to the value of yidi(k) in increasing order.
Step 5.3: Choose q/2 i’s belonging to Iδlow(α(k)) from the
top of the sorted list and add them to LB(k).

Step 5.4: Choose q/2 i’s belonging to Iδup(α(k)) from the
bottom of the sorted list and add them to LB(k).
Step 6: If LB(k) = LB(k − 1) then set α(k + 1) = α(k), set
m(k + 1) = 0, and go to Step 10.
Step 7: Find α = [α1, α2, . . . , αl]T which minimizes W(α)
under the constraints (2), (3) and αi = αi(k), ∀i ∈ LN(k)
where LN(k) = L\LB(k).
Step 8: Let α∗ be an optimal solution of the QP subprob-
lem in Step 7 and set α(k + 1) = α∗.
Step 9: If m(k) ≤ l − 2 then set m(k + 1) = m(k) + 1. Other-
wise set m(k + 1) = 0.
Step 10: Add 1 to k and go to Step 2.

The difference between Algorithm 2 and SVMlight is only
the computation of the search direction d(k). In SVMlight,
d(k) is always set to the direction of the steepest descent,
that is, d(k) = −∇W(α(k)) for all k. Therefore, the com-
putational cost for one iteration in Algorithm 2 is a little
higher than that in SVMlight.

Theorem 2 Algorithm 2 stops within a finite number of
iterations for any τ > 0 and δ ∈ (0,C/2).

Proof. It is obvious from Step 9 that m(k) is set to zero at
least once in every l iterations. Assume that m(k) = 0 and
α(k) is not a (τ, δ)-optimal solution. In this case, yidi(k) is
equal to −Fi(α(k)) where Fi(α(k)) is defined by (7). Hence
{1, 2, . . . , l} are sorted in Step 5.2 according to the value
of Fi(α(k)) in decreasing order. Let i1 be the element of
Iδlow(α(k)) which is first chosen in Step 5.3. Also let i2 be
the element of Iδup(α(k)) which is first chosen in Step 5.4.
Since there exists at least one (τ, δ)-violating pair at α(k),
two indices i1 and i2 satisfy

i1 ∈ Iδlow(α(k)), i2 ∈ Iδup(α(k)), Fi1 (α(k)) − τ ≥ Fi2 (α(k)) ,

that is, (i2, i1) is a (τ, δ)-violating pair at α(k). From these
observations, we can conclude that for any k there exists
an r such that k ≤ r ≤ k + l − 1 and LB(r) contains at
least one (τ, δ)-violating pair at α(r). Therefore it follows
from Theorem 1 that Algorithm 2 terminates within a finite
number of iterations for any τ > 0 and δ ∈ (0,C/2). �

5. Experiments

In order to evaluate the effectiveness of the proposed
method, we have implemented both Algorithm 2 and
SVMlight in Scilab1 and applied to various benchmark data
sets. RBF kernels are used in all experiments. All experi-
ments were carried out on a PC with dual processor Xeon
2.8GHz and 2GB RAM. Comparisons are made in terms of
the CPU time and the number of iterations.

We have first applied Algorithm 2 and SVMlight to 13
kinds of benchmark data sets on pattern classification prob-
lems [6]. Table 1 shows the overview of the benchmark
data sets: n is the dimension of patterns; l the number of

1http://www.scilab.org/
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Table 1: Overview of the benchmark data sets [6]

Data n l C σ2

Banana 2 400 316.2 1.0
Breast-Cancer 9 200 15.19 50
Diabetis 8 468 100 20
Flare-Solar 9 666 1.02 30
German 20 700 3.16 55
Heart 13 170 3.16 120
Image 18 300 500 30
Ringnorm 20 400 109 10
Splice 60 150 1000 70
Thyroid 5 140 10 3
Titanic 3 150 1.0 1.0
TwoNorm 20 400 3.162 40
Waveform 21 400 1.0 20

Table 2: Comparison between Algorithm 2 (CG) and
SVMlight (SD) by CPU time and the number of iterations.

CPU time [sec] Iterations
CG SD CG SD

Banana 1.828 24.242 229.0 3525.4
Breast-Cancer 0.584 1.294 62.3 137.2
Diabetis 17.975 81.209 936.0 4376.7
Flare-Solar 1.664 1.670 55.1 56.9
German 11.792 12.777 199.3 223.1
Heart 0.158 0.125 14.4 12.0
Image 48.173 142.859 2219.7 6603.0
Ringnorm 3.448 0.714 103.8 23.7
Splice 15.770 6.357 487.9 196.8
Thyroid 0.073 0.064 16.0 12.7
Titanic 0.086 0.070 18.1 17.6
Twonorm 1.830 1.056 55.5 31.8
Waveform 2.486 2.149 64.9 62.4

training samples; C the constant in Problem 1; σ the ker-
nel width; nt the number of test samples. The values of the
hyper-parameters C and σ are set to those specified in the
web site [6]. Also, q is set to 20, and τ is set to 0.01. Ex-
perimental results are summarized in Table 2 where each
value represents the average for ten data sets. One can see
that for data called Banana, Breast-Cancer, Diabetis and
Image, both the CPU time and the number of iterations are
significantly reduced by using CG method. In particular,
Algorithm 2 is thirteen times faster than SVMlight for Ba-
nana.

Next we have applied Algorithm 2 and SVMlight to eight
kinds of benchmark data sets on regression problems [7].
Table 3 shows the overview of the benchmark data where
the the meanings of n, l, σ and nt are same as Table 1, and
C is the constant in Problem 2. The values of the hyper-
parameters C and σ are determined based on preliminary
experiments. Also, q is set to 20, and τ is set to 0.01. Exper-
imental results are summarized in Table 4 where each value
represents the average for ten data sets. For data called
Abalone, Housing, Mg, Mpg, Pyrim and Trizaines, both
the CPU time and the number of iterations are significantly
reduced by using CG method. In particular, Algorithm 2 is
about sixty times faster than SVMlight for Abalone.

6. Conclusion

A novel working set selection based on the conjugate
gradient method was proposed in this paper. Experimen-

Table 3: Overview of the benchmark data sets [7]

Data n l C σ2

Abalone 8 1000 31.62 1.00
Bodyfat 14 200 100.00 1.00
Housing 13 406 100.00 999.82
Mg 6 1000 1.00 1.00
Mpg 7 300 10.00 1000000.00
Pyrim 27 500 10.00 1.00
Space-ga 6 1000 1.00 1.00
Trizaines 60 136 1.00 1.00

Table 4: Comparison between Algorithm 2 (CG) and
SVMlight (SD) by CPU time and the number of iterations.

CPU time[sec] Iterations
CG SD CG SD

Abalone 10.361 645.866 176.3 11147.9
Bodyfat 0.258 0.142 14.1 7.0
Housing 48.303 284.361 1548.6 9287.6
Mg 6.747 75.203 136.2 1539.2
Mpg 0.459 4.048 28.4 258.2
Pyrim 0.241 0.939 31.5 131.2
Space-ga 12.948 6.109 234.2 69.7
Trizaines 2.794 11.313 74.8 310.0

tal results show that the proposed method is sometimes
very effective. However, at the same time, the proposed
method is as fast as or slower than the conventional method
for some data sets. Making clear the conditions on train-
ing samples under which the proposed method effectively
works is one of the future problems.
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