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Abstract—This paper provides new clustering algo-
rithms for data with tolerance. Tolerance includes wide
meanings, e.g., calculation errors and loss of attribute of
data. The tolerance is modified using by new concept of
tolerance vector. First, the concept is explained and opti-
mization problems of clustering are formulated using the
vectors. Second, the problems are solved using some dif-
ferent ways. Third, the new clustering algorithms are con-
structed by using the solutions of the problems. Moreover,
the effectiveness of proposed algorithms is verified through
some numerical examples.

1. Introduction

Clustering is one of the unsupervised classification and
fuzzy c-means (FCM)[1] is one of the typical technique of
fuzzy clustering.

Information on a real space is transformed to data in a
pattern space and analyzed in clustering. Therefore, there
are some problems that should be considered when trans-
forming, for example, measurement error margin, data that
cannot be regarded as one point, and missing values in data.
In the past, these uncertainties of data have been repre-
sented as interval range and many clustering algorithms for
these interval ranges of data have been constructed[2, 3]
and one of the authors have also proposed one of such
algorithms[4, 5]. In these algorithms, nearest neighbor dis-
tance, furthest neighbor distance and Hausdorff distance
have been used to calculate the dissimilarity between the
target data in clustering. However, the guideline to select
the available distance in each case has not been shown so
that this problem is difficult. When we consider such a
situation, it is more desirable to calculate the dissimilarity
between such interval ranges of data without introducing a
particular distance, e.g., nearest neighbor one and so on.

One of the authors introduced the new concept of toler-
ance which includes the above-mentioned uncertainties of
data and is different from the interval from the viewpoint of
introduction of tolerance vectors, and proposed two clus-
tering algorithms, one is based on Euclidean norm[6] and
the other is L1-norm[7]. The tolerance is defined as hyper-
sphere in these algorithms.

In this paper, we consider new optimization problems in
which the tolerance is defined as hyper-rectangle and we
construct new clustering algorithms based on sFCM (Stan-
dard Fuzzy c-means)[1] on L1-norm and Euclidean (L2)
norm for data with tolerance through solving the optimiza-
tion problems.

2. Theory

In this section, we discuss about optimization problems
for clustering.

We define some notations at the beginning. X =

{x1, . . . , xn} is a subset on p dimensional vector space Rp

and we write xk = (xk1, . . . , xkp)T ∈ Rp. Here, we con-
sider classifying the data set X into clusters Ci(i = 1, . . . , c).
Let vi = (vi1, . . . , vip)T ∈ Rp be the cluster center Ci and
V = {v1, . . . , vc} be the set of cluster centers. Moreover, µki
is the membership grade belonging xk to Ci and we denote
the partition matrix U = [µki]. Fuzzy c-means calculates V
and U which minimize a objective function by alternative
optimization.

2.1. Tolerance Vector

Here, we define tolerance vector εk = (εk1, . . . , εkp)T ∈

Rp, and E = {ε1, . . . , εn} is the set of tolerance. The ab-
solute value of εk j is restricted by the maximum tolerance
κk j, and the constraint condition is shown by the following
expression.

|εk j| ≤ κk j, (κk j > 0). (1)

Fig.1 shows the concept of tolerance in R2.
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Figure 1: An example of the tolerance vector in R2.
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2.2. sFCM for data with tolerance on L1-norm

The objective function of sFCM based on L1-norm is de-
fined by Jajuga[9].

JsFCM-L1 =

c
∑

i=1

n
∑

k=1

p
∑

j=1

µm
ki|xk j − vi j|, (2)

under the constraint
c

∑

i=1

µki = 1, (µki ≥ 0). (3)

We define the following objective function based on the
above equation.

JsFCMTR-L1 =

c
∑

i=1

n
∑

k=1

µm
kidki, (4)

where

dki =

p
∑

j=1

|xk j + εk j − vi j|.

The following optimal solution is obtained by using the La-
grange function.

µki =

















c
∑

s=1

(

dki

dks

)
1

m−1
















−1

. (5)

Here we propose two methods to obtain vi j. One is based on
Ref.[10], called Method 1. The other is based on Ref.[9],
called Method 2.

Method 1

From (4), semi-objective function is

Ji j(vi j) =
n

∑

k=1

µm
ki|xk j + εk j − vi j|. (6)

If this equation is minimized, the objective function is also
minimized. The optimal solution of vi j is calculated ac-
cording to the following procedures. The advantage of this
method is to obtain the exact optimum solutions.
Step 1 Data is sorted in ascending order in each dimen-
sion.

x1 j + ε1 j, . . . , xn j + εn j

↓ Sorting
xq(1) j + εq(1) j ≤ . . . ≤ xq(n) j + εq(n) j

where q(k) is substitution of (1, . . . , n).

Step 2 We calculate as follows.

S = −
1
2

n
∑

k=1

(µki)m.

Step 3 It starts from r = 0 and the following calculations
are repeated between S < 0.

r := r + 1;
S := S + (µq(r)i)m;

Step 4 From the above calculation, we obtain

vi j = xq(r) j + εq(r) j. (7)

Method 2

From (4), semi-objective function is

Ji j(vi j) =
n

∑

k=1

wki(xk j + εk j − vi j)2, (8)

where

wki =
µm

ki

|xk j + εk j − vi j|
.

From (8),

∂Ji j

∂vi j
= −2

n
∑

k=1

wki(xk j + εk j − vi j) = 0. (9)

Then, we have

vi j =

∑n
k=1 wki(xk j + εk j)

∑n
k=1 wki

. (10)

Next, we consider the way to obtain εk j. The procedure
is as same as vi j.

Method 1

Step 1 Data is sorted in ascending order in each dimen-
sion.

v1 j − xk j, . . . , vc j − xk j

↓ Sorting

vq(1) j − xk j ≤ . . . ≤ vq(c) j − xk j

where q(i) is substitution of (1, . . . , c).

Step 2 We calculate as follows.

S = −
1
2

c
∑

i=1

(µki)m.

Step 3 It starts from r = 0 and the following calculations
are repeated between S < 0.

r := r + 1;
S := S + (µkq(r))m;

Step 4 From the above calculation, we obtain

εk j = sign(vq(r) j − xk j) ×min{|vq(r) j − xk j|, κk j}. (11)

Method 2

From (4), semi-objective function is

Jk j(εk j) =
c

∑

i=1

wki(xk j + εk j − vi j)2. (12)

We partially differentiate (12) with respect to εk j and we
have

εk j =

∑c
i=1 wki(vi j − xk j)

∑c
i=1 wki

. (13)

From (1) and (13), we obtain

εk j = sign
( ∑c

i=1 wki(vi j − xk j)
∑c

i=1 wki

)

×min
{

∣

∣

∣

∣

∑c
i=1 wki(vi j − xk j)

∑c
i=1 wki

∣

∣

∣

∣

, κk j

}

. (14)
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2.3. sFCM for data with tolerance on Euclidean norm

We introduce the tolerance into the objective function of
sFCM by Bezdek[1].

JsFCMTR-L2 =

c
∑

i=1

n
∑

k=1

µm
ki‖xk + εk − vi‖

2, (15)

where

‖xk + εk − vi‖
2
=

p
∑

j=1

(xk j + εk j − vi j)2,

under the constraints

c
∑

i=1

µki = 1, (µki ≥ 0), (16)

ε2
k j ≤ κ

2
k j, (κk j > 0). (17)

We introduce the following Lagrange function to solve
the optimization problem,

Ls =

n
∑

k=1

c
∑

i=1

µm
ki‖xk + εk − vi‖

2
+

n
∑

k=1

γk(
c

∑

i=1

µki − 1)

+

n
∑

k=1

p
∑

j=1

δk j(ε2
k j − κ

2
k j). (18)

From the Kuhn-Tucker condition, we get as follows:

µki =

















c
∑

l=1

(

‖xk + εk − vi‖
2

‖xk + εk − vl‖
2

)
1

m−1
















−1

. (19)

vi j =

∑n
k=1 µ

m
ki(xk j + εk j)

∑n
k=1 µ

m
ki

. (20)

εk j = −αk j

c
∑

i=1

µm
ki(xk j − vi j), (21)

where

αk j = min
{

κk j

|
∑c

i=1 µ
m
ki(xk j − vi j)|

,
1

∑c
i=1 µ

m
ki

}

.

Note that we can develop the same discussion for en-
tropy regularized FCM (eFCM) as sFCM in which the fol-
lowing objective function is considered:

JeFCMTR =

c
∑

i=1

n
∑

k=1

µkidki + λ
−1

c
∑

i=1

n
∑

k=1

µki logµki. (22)

3. Algorithms

The algorithms derived in the above section are called
sFCMTR-L1-1, sFCMTR-L1-2, and sFCMTR-L2 in turn.

Each algorithm is calculated according to the following
procedure. Eqs. A, B and C used in each algorithm follow
Table 1.

Algorithm

Step 1 Give the values of m and κk j, and set initial
values of E and V.

Step 2 Calculate U = µki by Eq. A.
Step 3 Calculate V = vi j by Eq. B.
Step 4 Calculate E = εk j by Eq. C.
Step 5 If (U,E,V) is convergent, stop. Otherwise, go

back to Step 2.

Table 1: This table shows optimal solutions of each algo-
rithm.

Algorithm Eq. A Eq. B Eq. C
sFCMTR-L1-1 (5) (7) (11)
sFCMTR-L1-2 (5) (10) (14)
sFCMTR-L2 (19) (20) (21)

4. Numerical examples

In this section, we show some examples of classification
by the above-mentioned six algorithms. The classified data
set is diagnosis of heart disease[11]. The result of the di-
agnosis is known. We choose five attributes from 13 ones
of original data referring to the advice of a specialist. The
number of data is 866 and 560 data contains missing values
in some attributes. Please refer to Table 2 for the explana-
tion of each attribute and the number of missing values.

Table 2: The explanation of each attribute and the number
of missing values.

Attribute Number
of missing
values

Resting blood pressure 5
Maximum heart rate achieved 1
ST depression induced by exercise
relative to rest

8

The slope of the peak exercise ST
segment

255

Number of major vessels colored by
fluoroscopy

557

To treat missing values as tolerance, we give the average
of maximum value and minimum one to the missing one
of each attribute, and set the maximum tolerance κk j on the
absolute value of difference between the average and the
minimum value.

In all algorithms, the convergence condition is

max
i, j
|vi j − v̄i j| < 10−6,

where v̄i jis the previous optimal solution. In addition, m =
2 in sFCMTR.

In each algorithm, we give initial cluster centers at ran-
dom and classify the data set into two clusters. We run this
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trial 1000 times and show the average of ratio of correctly
classified results. Please refer to Table 3 for the results of
only 306 data without missing values, Table 4 for the re-
sults of the classification by using the algorithms proposed
in this paper and Table 5 for the results of the classification
by using the algorithms which treat missing value as inter-
val data and uses nearest neighbor distance to calculate the
dissimilarity.

Table 3: The results of classifying only 306 data without
missing values.

Algorithm The average of correctly classified ratio
sFCM-L1-1 70.0
sFCM-L1-2 71.9
sFCM-L2 75.2

Table 4: The results of the classification by using the pro-
posed algorithms in this paper.

Algorithm The average of correctly classified ratio
sFCMTR-L1-1 68.6
sFCMTR-L1-2 67.4
sFCMTR-L2 73.4

Table 5: The results of the classification by using the al-
gorithms which treat missing value as interval data and use
nearest neighbor distance to calculate dissimilarity.

Algorithm The average of correctly classified ratio
sFCM-L1-1 69.0
sFCM-L1-2 68.9
sFCM-L2 67.2

To compare the results for all data by the proposal algo-
rithms(Table 4) with the results for only data without miss-
ing values(Table 3), the latter is a little better than the for-
mer. However, this is very natural. From these examples,
we can not find significant difference between the algo-
rithms, using the tolerance and nearest neighbor distance.
The important point is that ε is calculated only by the pro-
posed algorithms. The meaning of ε depends on the data
set.

5. Conclusion

In this paper, we considered the optimization problems
for data with tolerance and solved the optimal solutions.
Using the results, we have constructed new six algorithms.
Moreover, we shown the usefulness of the proposed algo-
rithms through some numerical examples.

In these algorithms, data with tolerance is not regarded
as interval data. The reason is that the algorithms is more
appropriate because we can use the former dissimilarities
based on normal distance in the frame of the optimiza-
tion. Moreover, we can use the proposed algorithms for
the data with tolerance defined as hyper-rectangle in more
cases than the algorithms for the data with tolerance de-
fined as hyper-sphere[6, 7] because more certainties should
be represented as hyper-rectangle than hyper-sphere.

In the forthcoming paper, we will consider to apply the
concept of tolerance to regression analysis and support vec-
tor machine.
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