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Abstract—Many infectious pathogens, and in particular

viruses, have an extremely high rate of mutation. This can

lead to rapid evolution driven by selection pressures operat-

ing at the within- and between- host levels, as strains com-

pete for resources within their host while also competing

to effectively transmit to new hosts. In the case of chronic

viral infections, such as those caused by HIV or hepatitis

C, substantial viral evolution may take place within a sin-

gle infected individual. The fitness of a pathogen has been

studied at the epidemic scale and at the within-host level,

but linking the two levels of selection pressure has yet to be

satisfactorily resolved. We modify a simple model describ-

ing the within-host dynamics of HIV infection by including

N different pathogen strains and allowing these strains to

mutate. Within the host we observe different strategies for

pathogen success during different stages of infection. We

embed the within-host model into a simple epidemic model

first analytically, resulting in a largest-eigenvalue problem

for a particular integral operator, and into a Monte Carlo

simulation. We show that co-existence of strains is possi-

ble and we explore the factors leading to pathogen success.

1. Introduction

Within an infected host, viruses compete for host re-

sources while simultaneously competing for transmission

to a new host. The possibility of natural selection at these

two scales raises the possibility of conflicts between selec-

tion pressures acting at the two scales [1] and raises the

question of how such conflicting selection pressures can be

resolved [2, 3].

The simplest statement of parasite fitness derived from

epidemiological considerations alone is

R ∼
β

δ + α + γ
, (1)

where β, δ, α and γ are rates of transmission, uninfected

host mortality, virulence and recovery from infection.

Clearly, virulence is detrimental to pathogen fitness and

this raises the question of why pathogens kill or harm their

hosts. Early work in this area explored explicit trade-offs

between virulence and transmission [4–6], which can be

criticised because the relationship between virulence and

transmission is based on plausible arguments, but not on
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Figure 1: Elements of our model procedure

the detailed biology of the host-parasite interaction. Ide-

ally, one should derive the transmission-virulence relation-

ship from basic between- and within-host processes, rather

than imposing a particular linkage. A useful framework

for considering these questions is one of nested models

where a within-host model of parasite population dynam-

ics is linked to a population-level model for between-host

infection dynamics e. g. [7–12] Such a framework allows

one to explicitly link the between-host model to the be-

haviour of the within-host model. An alternative hypoth-

esis is that of short-sighted evolution, in which a pathogen

evolves to maximize its fitness within a host at the expense

of its spread through a population of hosts [13]. Evidence

for within-host evolution exists e. g. for HIV [14].

Our approach to pathogen evolution is based on dynamic

models at the within- and between- host levels, along with

the linkage between these models (representing transmis-

sion). We present semi-analytic results for competition

between two strains and numerical simulations of scenar-

ios with more strains. Our results are shown for particular

models, but our procedure is adaptable to a wide range of

situations.

2. Modeling

Within-host model We will use a modified HIV dynam-

ics model [15]: (i) we assume a trade-off between viral

production rate p and infected cell death rate µ by taking
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µ = µ(p) to be an increasing, concave-up function [16, 17];

(ii) multiple strains of virus, different only in their pro-

duction rates compete within the host; (iii) we introduce

a small mutation rate ε between viral strains. The complete

model is expressed as a system of 2N + 1 equations:

dT

dt
= λ − dT − kT

M
∑

j=1

V j

dT ∗
i

dt
= k(1 − ε)TVi − µ(pi)T

∗
i +
εkT

M

M
∑

j=1

V j (2)

dVi

dt
= piT

∗
i − cVi i = 1..M

This model is described in more detail in [18]. The appro-

priate measure of within-host viral fitness for strain i is

ρi =
Niki(1 − ε)λ

cid
(3)

In the absence of mutation, fitter viruses competitively ex-

clude weaker viruses. Further, there is a single optimal

production rate p∗ that maximizes ρ [16]. The uninfected

steady state exists at T = λ/d,Ti = 0,Vi = 0 for all i

and there is a single infected steady state with all viruses

present: the p∗ virus present in significant numbers, while

its weaker competitors are present at O(ε) only [18]. How-

ever, in this work, transients are important. Elsewhere we

show that a range of viruses with p > p∗ dominate the p∗

virus during the early dynamics [18] before eventually be-

ing overtaken. This is significant since the host is probably

still alive and transmitting at this point so such viruses can

be transmitted.

We can summarize the dynamic possibilities for a sce-

nario where the optimal within-host strain p∗ competes

with a second strain of production rate p2: (1) if p2 < p∗

then the density of the within-host optimal strain, p∗, al-

ways exceeds that of the p2-strain; (2) if p∗ < p2 < p†

then the p2 strain is initially dominant, with the peak of the

initial virus spike increasing with p2. The time for the p∗

strain to overtake the p2 strain decreases with p2. (3) there

is a range (p† < p2 < pmax ) of p2-values within which

the p2 strain could establish an infection if it were alone

in the host, but in the presence of the optimal within-host

competitor, its density always decreases.

Between-host model We now propose an SI model in-
corporating the within-host dynamics and consider, for
simplicity, only two viral strains. We focus on the initial
inoculum that infects a previously susceptible host, defin-
ing 0 ≤ x0 ≤ 1 as the fraction of viruses of strain 1 in the
infecting inoculum.

Ṡ = b − δS − S

∫ ∞

0

∫ 1

0

∫ 1

0

β(a, x0, x
′
0)I(t, a, x′0)dx0dx′0da (4)

∂I(t, a, x0)

∂t
+
∂I(t, a, x0)

∂a
= − (δ + α(a, x0)) I(t, a, x0) (5)

I(t, 0, x0) = S

∫ ∞

0

∫ 1

0

β(a, x0, x
′
0)I(t, a, x′0)dx′0da. (6)

I(t, a, x0) represents the density of infected individuals that
were infected by an inoculum x0 at time t− a. Susceptibles
are born at rate b and die at rate δ. Infection occurs by
random mixing and at rate β(a, x0, x

′
0
), producing infecteds

that die from natural mortality and addition mortality due
to infection, at rate α(a, x0). By defining the survivorship
probability σ(a, x0) and integrating, we can obtain a sim-
plified system (abbreviating):

σ(a, x0) = exp

(

−δa −

∫ a

0

α(z, x0)dz

)

(7)

Ṡ = b − δS − S

∫ ∞

0

∫ 1

0

∫ 1

0

β(.)I(t − a, 0, x′0)σ(.)dx0dx′0da (8)

I(t, 0, x0) = S

∫ ∞

0

∫ 1

0

β(.)I(t − a, 0, x′0)σ(.)dx′0da. (9)

Now defining the transmission kernel

Φ(x0, x
′
0) =

∫ ∞

0

β(a, x0, x
′
0)σ(a, x′0)da (10)

we can construct the next generation operator K:

K[i(x0)] =

∫ 1

0

Φ(x0, x
′
0)i(x′0)dx′0. (11)

R0 is then S 0 = b/δ times the largest eigenvalue of the next

generation operator, i.e. the largest solution Λ of the eigen-

value equation K[i(x0)] = Λi(x0). R0 represents the max-

imum rate of initial increase of infecteds over all possible

structures of the initial infected population. [19].

We write the steady state distribution of infected individ-

uals of age 0 as I(t, 0, x0) = î(x0) and that of susceptibles as

ŝ. Upon substitution of î(x0) into (8-9), we find

1

ŝ
î(x0) =

∫ 1

0

Φ(x0, x
′
0)î(x′0)dx′0 = K[î(x0)] (12)

ŝ =
b

δ +
∫ 1

0
K[î(x0)]dx0

(13)

Therefore any given equilibrium density of new infections

î(x0) is an eigenfunction of K with eigenvalue 1/ŝ.

We write such an equilibrium î(x0) = z f j(x0) where

f j(x0) is the jth eigenfunction of K with corresponding

eigenvalue Λ j. Dropping the j subscript, we find that,
1
ŝ
z f (x0) = zΛ f (x0). Using (13), we find that the eigenvalue

corresponding to this equilibrium is

Λ =

(

δ + Λz
∫ 1

0
i(x0)dx0

)/

b (14)

with

z = (Λb − δ)

/(

Λ

∫ 1

0
i(x0)dx0

)

. (15)

For an endemic equilibrium to exist, the dominant eigen-

value Λ must be greater than δ/b. Equivalently, R0 > 1.

The operator K acts on a function i(x0) defined on 0 ≤

x0 ≤ 1. Take an arbitrary distribution of infected individ-

uals structured by initial condition, φ0(x), and operate on
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it repeatedly with K. The simplest possibility is that, irre-

spective of φ0(x0), all possible strain-mixes are eventually

found in the population. That is, for every strain-mix y,

there is a generation n such that φn(y) = Kn[φ0(x0)](y) > 0.

Such an operator is the analogue of an irreducible, positive

matrix. In this case, it can be shown that there is a single

dominant eigenvalue (R0) and it is the only eigenvalue with

a non-negative eigenfunction, indicating that there is only

one stable distribution of strain mixes î(x0). If K is not er-

godic, we can find isolated collections of initial infection

states and then the final distribution of infected individuals

over x0 depends on φ0(x0).

Initial inoculum We assume that the inoculum size is a

fixed small density, but the proportions of the viral strains

in the inoculum reflect that of the transmitting host at the

moment of transmission. Specifically, we define the strain

mix at time 0 to be x0 = V1/(V1 + V2) and write the initial

conditions (T,T ∗
1
,T ∗

2
,V1,V2) = (λ/d, 0, 0, ξx0, ξ(1 − x0)).

where ξ is the initial virion concentration introduced by

one inoculum. While different x0 values lead to different

trajectories in the V1 − V2 phase plane, all trajectories lead

to the final state where the superior within-host competitor,

strain 1, has essentially excluded strain 2.

Between-host model linkage functions At the between-

host level we will use the SI model described above with

the simple functions β = βV and α = a1δ(T0 − T ) where

T0 = λ/d.

3. Simulation

We numerically solve the within-host model for a range

of initial conditions, for a period of time long enough that

the host will have died by the end of the period with high

probability. We store the dynamic variable T and Vi for

equally spaced time-steps through the simulation. We then

introduce a single newly-infected individual into the popu-

lation. We the run a stochastic simulation of the epidemic.

Each infected is considered at each time step and the prob-

ability of infecting a susceptible host is calculated using

the function β (described above). β changes with the host

viral load and so the infectivity changes as the infection

progresses in each host. Newly infected individuals are

introduced (with appropriate initial conditions) according

to the infectivities that are calculated (a Poisson process

is assumed). At each time step, new susceptibles are in-

troduced, and some die (with constant rates) and infecteds

die (and are removed) according to their death rates α (dy-

namic variable depending on their level of target cells, T ).

In figure 2 we plot simulation results from 2-strain simu-

lations where the p∗ strain competes with a single different

strain, p2. We plot the steady-state fraction of transmis-

sions of the p∗ strain and compare with results obtained

using the model described above.

p* 2p* 3p* p** 4p* 5p* pmax
0

0.2

0.4

0.6

0.8

1

p
2

F
ra

c
ti
o
n
a
l 
tr

a
n
s
m

is
s
io

n

p* dominant

p
2
 dominant

a �  = 1

a �  = 5

Figure 2: Two-strain competition results

In figure 3 we show the results of a simulation performed

using five strains, with production rates evenly spaced be-

tween p∗ and p∗∗, over varying levels of virulence. When

pathogen virulence is low, production rates closer to the

within-host optimum are favoured. As pathogen virulence

increases, strains with faster production rates become more

prevalent. This indicates that when virulence is high, the

main selection pressure comes from the need to transmit,

rather than within-host optimization. Although we gener-

ally observe co-existence of multiple strains in the popu-

lation, the p∗ strain is scarcely present at higher virulence,

and the p∗∗ strain is scarcely present for lower virulence.

If we also calculate the total number of each strain

present in the population, we find the proportions are al-

most the same. This means that the lower producing strains

infect a high proportion of hosts but transmit relatively

rarely. The higher-producing strains operate conversely.

This is because, in a single host, the higher producing

strains are always replaced by lower-producing strains over

time (due to mutation).

4. Discussion

We have shown that coexistence of multiple strains is

possible under the above assumptions, but typically there

is a dominant strain. In general, we found that the most

successful strains have an intermediate production rate that

is nonetheless higher than the within-host optimum rate

p∗. Our simulations show that as virulence decreases, the

within-host optimal strain is more favoured in this model.

Drug treatment effectively increases the host lifetime, and

so might give an advantage to such strains (assuming, of

course, that the within-host model maintains).

Given the great diversity of host-parasite systems, it is

clear that no single model will explain every aspect of the

all host-parasite interactions. However, we hope that the

general method presented here can be used to incorporate

detailed cell-level biology into our understanding of the

evolution of parasite virulence, appropriately evaluating the

importance of selection pressure at multiple levels.
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Figure 3: Five-strain competition results
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