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Abstract—Traditional models for geographical spread
of infectious agents invoke a diffusion mechanism. By ob-
serving the global distribution of avian influenza outbreaks
among wild and domestic birds, we show that this model
is not appropriate. We find that the outbreaks of avian in-
fluenza follow a scale-free distribution that can accurately
model connectivity between outbreaks on a scale-free com-
plex network. We explore possible mechanisms that can
generate such complex transmission dynamics. Our re-
sults indicate that heterogeneity in both the human and
animal populations is insufficient to explain our results.
Only when we model the potential transmission pathways
between flocks with a scale-free network do we obtain a
scale-free distribution of connectivity between outbreaks.

1. Introduction

Although complex networks have been observed in a
wide variety of physical and social systems [1, 12, 8, 7]
and there has been substantial discussion that such struc-
tures may underlie transmission of infectious agents within
various communities [9, 10, 11], there is currently no
direct experimental evidence supporting this hypothesis.
Nonetheless, a number of theoretical studies have shown
that topological structures typical of complex networks
lead to transmission dynamics markedly different from that
predicted by standard disease transmission models. In this
paper we examine the global spatio-temporal distribution
of avian influenza cases in both wild and domestic birds
and find that the network of outbreaks, and the links be-
tween them forms a scale-free network. We find that the
exponent of this distribution is less than 2 and therefore
the distribution has neither finite mean or variance. Con-
sequently, in contrast to standard mathematical models of
disease transmission [2, 6], the current avian influenza out-
break does not exhibit a positive threshold: the disease will
continue to propagate even with a vanishingly small rate of
transmission.

In this paper we are interested in the global spatio-
temporal transmission of avian influenza. Each node in the
network is a particular outbreak of avian influenza and links
between nodes are determined based on spatio-temporal
proximity. Hence, a node in our network could be a single

observed wild bird or an entire poultry farm. What matters
for the model is identifying discrete locations in time and
space, and linking them together. Analysis of this network
shows that it is scale-free. That is, the number of links from
a given nodek ≥ 1 has probability distribution

P(k) =
k−γ

ζ(γ)

with γ > 1. The denominatorζ(γ) is Riemann’s zeta func-
tion. If 1 < γ ≤ 2 this distribution does not have a finite
mean. Even if 2< γ ≤ 3 the variance of the number of links
is infinite and therefore even with very small (but non-zero)
rate of transmission, transmission will still persist [6].

The links between nodes are determined by proximity
and represent potential transmission pathways. Two nodes
are linked if transmission between them is possible. Ide-
ally, we should treat the actual transmission pathways. But,
that information is not available. We therefore assume that
transmission can occur only over a local area (in both time
and space). We have considered both the un-weighted net-
work and a weighted version. The un-weighted version is
equivalent to assigning a non-zero (but vanishing) probabil-
ity of transmission between any two nodes in the network.
For the weighted network we consider only the most plau-
sible pathways. Although there is good reason to suppose
that transmission of this virus between bird flocks may fol-
low a scale-free distribution [5], it is currently not obvious
that the traditional, and alternative, uniform mixing models
are inadequate.

2. Turning the data into a network

The data are a compilation of all reported avian cases of
avian influenza between 25 November 2003 and 10 March
2007 consisting of 3346 recorded cases. For each case,
the date of the outbreaktn and the location (longitudeλn

and latitudeφn) are recorded. Individual cases may either
be wild birds that are found post-mortem and determined
to be infected with a strain of avian influenza or the de-
tection of an avian influenza strain in a domestic flock.
Data relating to the magnitude of each incident are also
recorded. The data originally come from World Organisa-
tion for Animal Health alerts (see http://www.oie.int/) and
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Global distribution of bird flu cases, coloured by date

Figure 1: Avian influenza case data. (a) Raw data
displayed within Google Earth (http://earth.google.com/).
Circles indicate animal cases, triangles denote human
cases. Colour coding is by date. (b) Part of the data used in
this study, overlayed against a crude map of the coastline
of East Asia. Human cases are marked with crosses, ani-
mal cases with solid circles. Colour coding is by date. The
three large clusters correspond to the outbreaks in Cambo-
dia and in the north and south of Vietnam (around Hanoi
and Ho Chi Minh City), respectively. In panelb, the coast
of Hainan island is marked in the north-east of the image
and outbreaks in Hong Kong are shown in yellow in the
extreme north-east corner.

has been manually entered using ArcGIS and converted
to Keyhole Markup Language (KML) using Arc2Earth
(http://www.arc2earth.com/). The data is available, in
a format compatible with Google Earth (KML), from
http://www.declanbutler.info/Flumaps1/avianflu.html. Fig.
1 depicts one snapshot of this data.

Each incident (tn, λn, φn) corresponds to a node on the
graph of infection links. We construct a directed link from
node-i (ti, λi, φi) to node-j (t j, λ j, φ j) if

d(i, j) ≤ (t j − ti)µ (1)
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Figure 2: Rate of transmission of avian influenza. In
each of (a,b,c) we computed the maximum distance be-
tween reported avian influenza cases as a function of time.
(a) The global rate of transmission is depicted (all coun-
tries) along with an average rate of spread of about 61
km/day. In panel (b) and (c) we repeat the same calcula-
tion for cases reported in Vietnam and Russia. The aver-
age rate of spread within these two geographical regions is
about 37 km/day in (b) and 25 km/day in (c). The rate of
spread computed in panel (a) reflects the fact that transmis-
sion is in 2 dimensions (i.e. thediameter grows by about 60
km/day), whereas panel (b) and (c) reflect situations where
the disease propagation is in one linear direction only (i.e.
the growth of theradius is being measured). In the case
of Vietnam (b) this is due to the unique geography of the
country: two initial outbreaks centred in Hanoi and Ho Chi
Minh City spread roughly south and north, respectively. In
Russia (c) the reported cases represent the spread of avian
influenza from Asia to Europe along the Kazakhstan bor-
der.

and
0 ≤ (t j − ti) < Tmax (2)

whered(i, j) is the great circle distance between node-i and
node-j in kilometres andµ is a positive constant (units
of km/day) corresponding to the approximate geographi-
cal rate of transmission of the virus. Great circle distance
is computed from longitude and latitude using standard
spherical geometry and a value ofR = 6372.795 km for
the radius of the (assumed to be spherical) earth.

The choice of criterion to determine connectivity is arbi-
trary but also natural. If we assume that the geographical
rate of transmission of the virus is uniform and equal toµ,
then node-i is deemed to be connected to node-j if the virus
at node-i can travel as far as node-j before the outbreak is
observed to occur at node-j and sooner thanTmax days. We
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Figure 3:Network connectivity (adjacency) matrix. Both panels depict the connections present in the network deduced
according to the criteria (1) and (2). If there exists a connection from nodei (vertical axis) to nodej (horizontal) then the
point (j, i) is marked. In panel (a) the nodes are ordered according to time (that is,i < j only if ti ≤ t j). In panel (b) the
points are ordered approximately geographically.

have varied both parametersµ andTmax over a wide range
of values (3< µ < 50 km/day and 5< Tmax < 30 days)
and have not found significant qualitative variation in the
results. For the sake of brevity and concreteness the rest of
this report focuses on the specific valuesTmax = 10 days
andµ = 25 km/day. The choice of 25 km/day is motivated
by the apparent rate of spread of avian influenza cases in
the early stage of the outbreak as depicted in Figure 2. The
choice of 10 days is only to provide more easily visible re-
sults.

3. Properties of that network

Figure 3 depicts the adjacency matrix for this network.
In Fig. 3 (a) the diagonal structure of the matrix indicates
connection between temporally adjacent nodes. The clus-
tering in Fig. 3 (b) is due to geographical localisation. The
sample average number of connections from a given node
is (a relatively large) 16.8 and because of our criterion for
selecting connectivity, nodes are connected only if they are
separated by no more than 10 days. Hence, the fact that the
data spans 1203 days indicates that the shortest path be-
tween random nodes can be very large: hence, this is not
a small-world network. However, the reason for this is en-
tirely artificial. The geographical connectivity may well be
small-world, but because we constrain nodes in time, this
feature is suppressed. However, the available data make it
impossible to resolve this issue. Nonetheless, the resultant
network is scale-free. This is evident from Fig. 4. Figure
4 (a) illustrates that this network is composed of discrete
clusters. The two main reasons for this disconnectedness is

our initial assumptions concerning connectivity (1) and (2)
and the inevitable incompleteness of available data.

In Fig. 4 (b) we depict the link distribution and an es-
timate of the scale exponent. We observe that by altering
Tmax or µ we can changeγ, but changing these parameters
does not affect our main result: the network is scale-free
and has infinite mean and variance. Conversely, increas-
ing this average number of connections or choosing a more
complicated metric (rather than great circle distance) can
increase the connectedness of the final network.

It is worth noting that we observe a fairly low scale ex-
ponentγ ≈ 1.2. This is lower than the oft-cited “typical”
range of 2< γ ≤ 3, but of the same order of magnitude
as experimental results for human travel [3] (γ ≈ 1.6) and
similar to the network scaling (γ ≈ 1.8) reported for e-mail
collaborative networks [4]. In this study, we have not traced
the actual infection pathways. Instead, we take the ob-
served data for outbreaks of avian influenza and construct
a network thatcontains part of the underlying transmission
paths. We assume that the virus propagates at a constant
and relatively modest rate, and related events must be rel-
atively close in time. Certainly, delays in detection and
reporting of cases, and long-distances transmission (for ex-
ample, via migratory birds) would violate these assump-
tions. Hence the network we construct is inevitably only
an approximation. Nonetheless, the basic result remains
valid: the spatial-temporal connectedness (defined by (1)
and (2)) is scale-free.
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Figure 4: Network degree distribution. In the upper
panel, the data from Figure 1 is re-drawn with the addi-
tion of network connections. Clearly, the entire network is
not connected. Nonetheless, from this network we com-
pute the degree distribution (lower panel) and display it on
log-log scale. The data exhibits a scale-free distribution
with estimated scale exponent ofγ ≈ 1.2028. Kolmogorov-
Smirnov (KS) goodness-of-fit test indicates a value within
the 90% confidence interval given that the underlying data
is sampled from a power law distribution.
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