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Abstract—This is an extension of our previous work
[3]. Numerical verification of the existence of nontrivial
steady state solutions with multi-peaks for 3 dimensional
Rayleigh–Bénard convection is studied based on the fixed
point theorem using a Newton like operator with the spec-
tral Galerkin method.

1. Introduction

The steady state bifurcation equations for the perturba-
tion (u, θ, p) to the equilibrium of Rayleigh–Bénard con-
vection are given by [3]

−∆u +
1
P (u · ∇)u + ∇p − Rθe3 = 0, (1a)

∇·u = 0, (1b)
−∆θ + (u · ∇)θ − u3 = 0 (1c)

where R, P are Rayleigh and Prandtl numbers in the media
between two parallel plates (R × R × [0, π]).

Assume parity conditions [6] on Ω ≡ [0, 2π
a ] × [0, 2π

b ] ×
[0, π] for given wave numbers a, b > 0 with the mea-
sure |Ω| ≡ 4π3

ab . Then the solution of (1) can be repre-
sented by Fourier series [3]: u =

∑
α,0[uαφα1 , vαφ

α
2 ,wαφ

α
3 ],

θ =
∑
α3,0 θαφ

α
3 , p =

∑
α,0 pαφα4 , where α ≡ (α1, α2, α3) ∈

Z3
0 is the multi-index of non–negative integers, and

(uα, vα,wα, θα, pα) are coefficients of (u, θ, p) with respect
to the base functions φαi defined by,

φα1 (x, y, z) ≡ Kα sin(aα1x) cos(bα2y) cos(α3z),
φα2 (x, y, z) ≡ Kα cos(aα1x) sin(bα2y) cos(α3z),
φα3 (x, y, z) ≡ Kα cos(aα1x) cos(bα2y) sin(α3z),
φα4 (x, y, z) ≡ Kα cos(aα1x) cos(bα2y) cos(α3z).

Here Kα ≡
√

(2 − δ0α1 )(2 − δ0α2 )(2 − δ0α3 )/|Ω| is the nor-
malization factor with respect to L2(Ω) inner product 〈 ·, · 〉
and δi j is the Kronecker delta on i, j.

Norms for u, θ and p are: ∥u∥20 =
∑
α,0{u2

α + v2
α + w2

α},
∥∇u∥20 =

∑
α,0{u2

α + v2
α + w2

α}A2
α,
∥∥∥∇2u

∥∥∥2
0 =
∑
α,0{u2

α + v2
α +

w2
α}A4

α, ∥θ∥20 =
∑
α3,0 θ

2
α, ∥∇θ∥20 =

∑
α3,0 θ

2
αA2
α,
∥∥∥∇2θ
∥∥∥2

0 =∑
α3,0 θ

2
αA4
α, ∥p∥20 =

∑
α,0 p2

α, ∥∇p∥20 =
∑
α,0 p2

αA2
α,

∥∥∥∇2 p
∥∥∥2

0 =
∑
α,0 p2

αA4
α, ∥∆u∥0 =

∥∥∥∇2u
∥∥∥

0, ∥∆θ∥0 =
∥∥∥∇2θ
∥∥∥

0,

∥∆p∥0 =
∥∥∥∇2 p

∥∥∥
0, where Aα ≡

√
(aα1)2 + (bα2)2 + α2

3.
Divergence free orthogonal base functions are:

Φα ≡
[
−aα1α3

AαBα
φα1 ,−

bα2α3

AαBα
φα2 ,

Bα
Aα
φα3

]
, α ∈ I1,

Ψα ≡
[
bα2

Bα
φα1 ,−

aα1

Bα
φα2 , 0
]
, α ∈ I2,

where Bα ≡
√

(aα1)2 + (bα2)2 and indices subsets are I1 ≡
[1, 0, 1]+Z3

0∪[0, 1, 1]+Z3
0, I2 ≡ [1, 1, 0]+Z3

0. Set I0 = I1∪I2
and then define function spaces V and W as follows:

V =
{

u =
∑
α∈I0

{ξαΦα + ηαΨα} : ∥∆u∥0 < ∞
}
⊂ H2(Ω)3,

W =
{
θ =
∑
α∈I3

θαφ
α
3 : ∥∆θ∥0 < ∞

}
⊂ H2(Ω),

where I3 ≡ [0, 0, 1] + Z3
0. Note ∥u∥20 =

∑
α∈I0
{ξ2α + η2

α},
∥∇u∥20 =

∑
α∈I0
{ξ2α+η2

α}A2
α, ∥∆u∥20 =

∑
α∈I0
{ξ2α+η2

α}A4
α for all

u ∈ V , and ∥θ∥20 =
∑
α∈I3
θ2α, ∥∇θ∥20 =

∑
α∈I3
θ2αA2

α, ∥∆θ∥20 =∑
α∈I3
θ2αA4

α for all θ ∈ W.

2. A priori error estimates

For a fixed positive integer N, define finite dimensional
subspaces VN =

{
u ∈ V : ξα = ηα = 0, ∀α ∈ I0, |α| > N

}
,

WN =
{
θ ∈ W : θα = 0, ∀α ∈ I3, |α| > N

}
where |α| ≡

α1 + α2 + α3. And define projections PN : V → VN and
QN : W → WN as follows[7]:

〈 ∇ (u − PNu),∇v 〉 = 0, ∀v ∈ VN , (2a)
〈 ∇ (θ − QNθ),∇ϑ 〉 = 0, ∀ϑ ∈ WN . (2b)

Due to orthogonal relations of base functions of V and W,
these projections (2) are truncation operators:

PNu =
∑
α∈I0,N

{ξαΦα + ηαΨα} , QNθ =
∑
α∈I3,N

θαφ
α
3 ,

I0,N ≡ {α ∈ I0 : |α| ≤ N }, I3,N ≡ {α ∈ I3 : |α| ≤ N }.
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From these characterization of projections, we have (for
proofs of Theorem 1, Lemma 2, Corollary 3, see [4])

Theorem 1 For any (u, θ) ∈ X and (PNu,QNθ) ∈ XN in
(2), the following holds:

∥u − PNu∥0 ≤
C2

0

(N + 1)2 ∥∆u∥0, (3a)

∥∇(u − PNu)∥0 ≤ C0

N + 1
∥∆u∥0, (3b)

∥θ − QNθ∥0 ≤
C2

0

(N + 1)2 ∥∆θ∥0, (3c)

∥∇(θ − QNθ)∥0 ≤ C0

N + 1
∥∆θ∥0, (3d)

where C0 ≡
√

1 + a−2 + b−2 depends only on Ω.

Lemma 2 For any (u, θ) ∈ X, it holds that

∥u∥∞ ≤ π

3

√
6 − 2π2

5
C1∥∆u∥0,

∥θ∥∞ ≤ π

3

√
6 − 36ζ(3)

π2 +
π2

5
C1∥∆θ∥0,

where C1 ≡ C2
0 |Ω|

− 1
2 depends only onΩ and ζ(s) ≡ ∑∞n=1

1
ns

is the Riemann zeta function for s > 1.

Corollary 3 Under the same assumptions of Theorem 1,
the following holds:

∥u − PNu∥∞ <
2C1√

N
∥∆u∥0, ∥θ − QNθ∥∞ <

2C1√
N
∥∆θ∥0. (4)

3. A fixed point formulation

The steady state solution of (1) satisfies

−∆u + ∇p = f(u, θ), (5a)
∇·u = 0, (5b)
−∆θ = g(u, θ), (5c)

where the right hand sides of (5) are defined by

f(u, θ) = − 1
P (u · ∇)u + Rθez, g(u, θ) = −(u · ∇)θ + w.

Define F(u, θ) ≡ (f(u, θ), g(u, θ)). We call the solution op-
erator S for (5) as Stokes operator. Thus (u, θ) = SF(u, θ)
means: for all (v, ϑ) ∈ X

〈 ∇SF(u, θ),∇(v, ϑ) 〉 = 〈 F(u, θ), (v, ϑ) 〉. (6)

Note that S−1(u, θ) = (−∆u + ∇p,−∆θ) with an associated
pressure p = p(u, θ).

Usually, we use Newton’s method (see [5]) to get an ap-
proximate solution (uN , θN) ∈ XN of (5) and get an approx-
imate pressure pN from ∇pN ≡ fN(uN , θN)+∆uN , where fN

is the truncation up to |α| ≤ N of the expansion of f. And
the residual equation is: find (ū, θ̄) ∈ X satisfying

−∆ū + ∇p̄ = f(uN + ū, θN + θ̄) + ∆uN − ∇pN , (7a)
∇·ū = 0, (7b)
−∆θ̄ = g(uN + ū, θN + θ̄) + ∆θN . (7c)

Set F̄(ū, θ̄) ≡ (f(uN + ū, θN + θ̄)+∆uN −∇pN , g(uN + ū, θN +
θ̄) + ∆θN) ≡ (f̄(ū, θ̄), ḡ(ū, θ̄)), then the Stokes operator S
gives us a fixed point problem which is equivalent to (7):

(ū, θ̄) = SF̄(ū, θ̄) ≡ K(ū, θ̄). (8)

Since X ⊂ H1(Ω)4, K is a compact operator in X . Hence
by Schauder’s fixed point theorem, if we find a nonempty,
closed, convex, and bounded set U ⊂ X satisfying KU ⊂
U, then there exists a solution of (8) in U which is called a
candidate set.

Define PN : X → XN by PN = (PN ,QN), then (2) can be
simplified as: for (u, θ) ∈ X

〈 ∇((u, θ) − PN(u, θ)),∇(v, ϑ) 〉 = 0, ∀(v, ϑ) ∈ XN . (9)

And (8) can be decomposed into two parts:

PN(ū, θ̄) = PNK(ū, θ̄), (10a)
(I − PN)(ū, θ̄) = (I − PN)K(ū, θ̄). (10b)

Define a Newton–like iteration operator N : X → XN for
(8) and a new map T as follows:

N ≡ PN − L−1
N PN(I − K), T ≡ N + (I − PN)K ,

where LN ≡ PN [I − SF′(uN , θN)]
∣∣∣∣
XN

: XN → XN is as-

sumed to be regular, i.e., one-to-one and onto. Here F′ is
the Fréchet derivative of F: for any (ū, θ̄) ∈ X,

F′(u, θ)(ū, θ̄) ≡
(
f′(u, θ)(ū, θ̄), g′(u, θ)(ū, θ̄)

)
,

f′(u, θ)(ū, θ̄) ≡ − 1
P [(u · ∇)ū + (ū · ∇)u] + Rθ̄ez,

g′(u, θ)(ū, θ̄) ≡ −
[
(u · ∇)θ̄ + (ū · ∇)θ

]
+ w̄.

The second part of T becomes small or a contraction if
the truncation number N is sufficiently large. The operator
N is compact since it maps X into the finite dimensional
space XN , and so is T .

Lemma 4 The problem (10) is equivalent to the following
fixed point problem:

(ū, θ̄) = T (ū, θ̄). (11)

From Lemma 4, we have a compatible verification condi-
tion of the form: TU ⊂ U if there exists a candidate set U
which is nonempty, closed, convex, and bounded in X.

For given ξα, ηα, θα ≥ 0, set [ξα] ≡ [−ξα, ξα], [ηα] ≡
[−ηα, ηα], [θα] ≡ [−θα, θα], and define UN ⊂ XN by

(u, θ) ∈ UN ⇐⇒ ξα ∈ [ξα], ηα ∈ [ηα], θα ∈ [θα]. (12)

- 259 -



Let X⊥N be the orthogonal complement of XN in X. Given
m1,m2 ≥ 0, define U∗ ⊂ X⊥N by

(u, θ) ∈ U∗

⇐⇒


∥u∥0 ≤

C2
0

(N+1)2 m1, ∥∇u∥0 ≤ C0
N+1 m1,

∥u∥∞ ≤ 2C1√
N

m1, ∥θ∥0 ≤
C2

0
(N+1)2 m2,

∥∇θ∥0 ≤ C0
N+1 m2.

(13)

Now, set U ≡ UN ⊕ U∗, then we obtain:

Theorem 5 Let UN , U∗ and U be sets defined as above. If

NU ⊂ UN , (14a)
(I − PN)KU ⊂ U∗. (14b)

then there exists a fixed point of T in U.

In [4], proofs of Lemma 4 and Theorem 5 can be found
with statements on computational verification conditions.

4. Numerical results

Solutions with 8 peaks are invariant under quarter-
period diagonal translation in (x, y)-plane: g(x+π/(2a), y+
π/(2b), z) = g(x, y, z), which gives us more restriction, i.e,
α1 + α2 is a multiple of 4 and α1, α2 are even. The size of
finite part is reduced to one quarter of that of 2 peaks case.
Thus we can use more large truncation numbers.

Finally, solutions with 32 peaks are invariant under
1
8 -period diagonal translation in (x, y)-plane, i.e., g(x +
π/(4a), y+π/(4b), z) = g(x, y, z) which means that α1+α2 is
a multiple of 8 and α1, α2 are multiples of 4. The reduction
is one sixteenth of 2 peaks case and one quarter of 8 peaks.

We set a2 = 1
8 , b2 = 3

8 and P = 10 in the numerical
experiments with 1% inflation factor (δ = 0.01). Then the
critical Rayleigh number Rc = 6.75 can be attained at some
special mode α, for example, α = (2, 0, 1) or α = (1, 1, 1)
(see [6] for detail).

For the interval arithmetic, we use PROFIL [2] and INT-
LAB [1] on Intel Pentium 4 (3.8 GHz) machine.

Tables show that the relative Rayleigh number r = R/Rc,
the truncation number N, the converged step k, L∞ norms of
finite parts (uh, θh), and the bounds m1, m2 of infinite part.
Here, L1 type estimate is used to calculate upper bounds of
L∞ norms.

In figures, isothermal lines are drawn after adding the
conduction solution [3], and streamlines are also supplied
on the slice of the middle of the domain (z = π2 ).

The bifurcation diagram is drawn for L∞ norms of ap-
proximate solutions (uN , θN) with 2, 8 and 32 peaks along
the relative Rayleigh number.
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Figure 2: Isothermal lines and streamlines of rectangular
and hexagonal type solutions with 32 peaks on the plane
[0, π2a ] × [0, π2b ] ×

{
π
2

}
when r = R/Rc = 16.2.

Figure 3: Isothermal lines and streamlines of the hexagonal
type solution with 32 peaks when r = R/Rc = 16.2.
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Figure 4: Bifurcation diagrams for 2, 8 and 32 peaks with
respect to the relative Rayleigh number. Red for hexagonal,
blue for rectangular cases. Red rectangles and blue circles
are verified points.
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