Validated computations for fundamental solutions of linear elliptic operators

Kaori Nagatou
Faculty of Mathematics, Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan
Email: nagatou@math.kyushu-u.ac.jp

Abstract

We present a method to enclose fundamental solutions of linear elliptic operators, especially for one dimensional Schrödinger operators which have periodic potentials. Our method is based on Floquet theory and Nakao's verification method for nonlinear equations. We show how to enclose fundamental solutions together with characteristic exponents and give a numerical example.

1. Introduction

We consider to compute fundamental solutions for the following equation

$$
\begin{equation*}
L \psi \equiv-\psi^{\prime \prime}+q(x) \psi=0, \quad x \in \mathbf{R} \tag{1}
\end{equation*}
$$

where we assume that $q(x) \in L^{\infty}(\mathbf{R})$ is a periodic function with a period r.

By Floquet Theory there exist fundamental solutions $\psi_{1}(x), \psi_{2}(x)$ of $L \psi=0$ s.t.

$$
\begin{equation*}
\psi_{1}(x)=e^{\mu x} p_{1}(x), \quad \psi_{2}(x)=e^{-\mu x} p_{2}(x) \tag{2}
\end{equation*}
$$

where μ is the characteristic exponent and $p_{1}(x), p_{2}(x)$ are periodic functions. Our aim is to compute $\psi_{1}(x), \psi_{2}(x)$ with guaranteed accuracy.

Once after we obtained such enclosed fundamental solutions, we may use them for another problem. For example, using those guaranteed fundamental solutions we define the Green's function $G(x, y, \lambda)[1]$ for $-\infty<x, y<\infty$ by
$G(x, y, \lambda)= \begin{cases}\psi_{1}(x) \psi_{2}(y) / W\left(\psi_{1}, \psi_{2}\right)(x) & (x \leq y) \\ \psi_{2}(x) \psi_{1}(y) / W\left(\psi_{1}, \psi_{2}\right)(x) & (x \geq y)\end{cases}$
where $W\left(\psi_{1}, \psi_{2}\right)(x) \equiv \psi_{1}(x) \psi_{2}^{\prime}(x)-\psi_{1}^{\prime}(x) \psi_{2}(x)$ stands for the Wronskian. Then we have [1]

$$
\begin{equation*}
L^{-1} f=\int_{\mathbf{R}} G(x, y, \lambda) f(y) d y \tag{4}
\end{equation*}
$$

This kind of expression for L^{-1} is useful to execute another verification method related to the operator L.

2. Verification for fundamental solutions

In order to verify the fundamental solutions ψ_{1} and ψ_{2} in (1) satisfying (2), it is sufficient to enclose the functions ϕ_{1} and ϕ_{2} which are solutions for the following equations:

$$
\begin{align*}
& \left\{\begin{aligned}
-\phi_{1}^{\prime \prime}+q \phi_{1} & =0 \\
\phi_{1}(0)=1, \phi_{1}^{\prime}(0) & =0
\end{aligned}\right. \tag{5}\\
& \left\{\begin{aligned}
-\phi_{2}^{\prime \prime}+q \phi_{2} & =0 \\
\phi_{2}(0) & =0, \phi_{2}^{\prime}(0)
\end{aligned}\right) \tag{6}
\end{align*}
$$

Let S_{h} denote the set of continuous and piecewise linear polynomials on $[0, r]$ with uniform mesh $0=$ $x_{0}<x_{1}<\cdots<x_{N}=r$ and mesh size h. We define a function space

$$
V \equiv W_{\infty, 0}^{1}(0, r) \cap\left(\bigwedge_{i=0}^{N} C^{1}\left[x_{i}, x_{i+1}\right]\right)
$$

and we define the norm for $(w, \mu) \in V \times \mathbf{R}$ by

$$
\|(w, \mu)\|_{V \times \mathbf{R}} \equiv \max \left\{\|w\|_{W_{\infty, 0}^{1}},|\mu|\right\}
$$

where $W_{\infty, 0}^{1}(0, r)$ is a usual Sobolev space defined by

$$
W_{\infty, 0}^{1}(0, r) \equiv\left\{\phi \in W_{\infty, 0}^{1}(0, r) \mid \phi(0)=\phi(r)=0\right\}
$$

Setting $\phi_{1}(r)=\kappa, \phi_{2}(r)=\tau$ and transforming

$$
\widetilde{\phi}_{1}(x) \equiv \phi_{1}(x)+\frac{1-\kappa}{r} x-1, \widetilde{\phi}_{2}(x) \equiv \phi_{2}(x)-\frac{\tau}{r} x
$$

we consider the following problems:
Find $\left(\widetilde{\phi}_{1}, \kappa\right) \in V \times \mathbf{R}$ s.t.

$$
\left\{\begin{array}{c}
-\widetilde{\phi}_{1}^{\prime \prime}+q\left(\widetilde{\phi}_{1}+\frac{\kappa-1}{r} x+1\right)=0 \quad \text { in }[0, r] \tag{7}\\
\widetilde{\phi}_{1}(0)=\widetilde{\phi}_{1}(r)=0 \\
\widetilde{\phi}_{1}^{\prime}(0)=\frac{1-\kappa}{r}
\end{array}\right.
$$

Find $\left(\widetilde{\phi}_{2}, \tau\right) \in V \times \mathbf{R}$ s.t.

$$
\left\{\begin{array}{c}
-\widetilde{\phi}_{2}^{\prime \prime}+q\left(\widetilde{\phi}_{2}+\frac{\tau}{r} x\right)=0 \quad \text { in }[0, r] \tag{8}\\
\widetilde{\phi}_{2}(0)=\widetilde{\phi}_{2}(r)=0 \\
\widetilde{\phi}_{2}^{\prime}(0)=1-\frac{\tau}{r}
\end{array}\right.
$$

Let $P_{h 0}: V \rightarrow S_{h}$ denote the H_{0}^{1}-projection defined by

$$
\left(\nabla\left(u-P_{h 0} u\right), \nabla v\right)_{L^{2}}=0 \text { for all } v \in S_{h},
$$

and define the projection $P_{h}: V \times R \rightarrow S_{h} \times R$ by

$$
P_{h}(u, \lambda) \equiv\left(P_{h 0} u, \lambda\right)
$$

In the below we describe how to enclose $\left(\widetilde{\phi}_{1}, \kappa\right) \in$ $V \times \mathbf{R}$ in (7). The enclosure for $\left(\widetilde{\phi}_{2}, \tau\right) \in V \times \mathbf{R}$ is analogous.

Now, let $\left(\widetilde{\phi}_{1, h}, \kappa_{h}\right) \in S_{h} \times R$ be a finite element solution of (7). We will verify the solution $\left(\widetilde{\phi}_{1}, \kappa\right)$ in the neighborhood of ($\bar{\phi}_{1}, \kappa_{h}$) satisfying

$$
\begin{cases}-\bar{\phi}_{1}^{\prime \prime}=-q\left(\tilde{\phi}_{1, h}+\frac{\kappa-1}{r} x+1\right) & \text { in }(0, r), \tag{9}\\ \bar{\phi}_{1}(x)=0 & \text { for } x=0, r .\end{cases}
$$

Notice that $\bar{\phi}_{1} \in W_{\infty, 0}^{1}(0, r) \bigcap W_{\infty, 0}^{2}(0, r)$, and $\widetilde{\phi}_{1, h}=P_{h 0} \bar{\phi}_{1}$. Defining $w=\widetilde{\phi}_{1}-\bar{\phi}_{1}, v_{0}=\bar{\phi}_{1}-\widetilde{\phi}_{1, h}$, $\mu=\kappa-\kappa_{h}$, we have

$$
\left\{\begin{array}{r}
-w^{\prime \prime}=-q\left(w+v_{0}+\frac{\mu}{r} x\right) \quad \text { in }(0, r) \tag{10}\\
w(0)=w(r)=0 \\
w^{\prime}(0)=\frac{1-\mu-\kappa_{h}}{r}-v_{0}^{\prime}(0)-\widetilde{\phi}_{1, h}^{\prime}(0)
\end{array}\right.
$$

Thus using the following compact map on $V \times R$

$$
\begin{gather*}
F(w, \mu) \equiv\left((- \Delta) ^ { - 1 } \left\{-q\left(w+v_{0}+\frac{\mu}{r} x\right)\right.\right. \\
\mu+w^{\prime}(0)-\frac{1-\mu-\kappa_{h}}{r} \\
\left.+v_{0}^{\prime}(0)+\widetilde{\phi}_{1, h}^{\prime}(0)\right) \tag{11}
\end{gather*}
$$

where $(-\Delta)^{-1}$ means the solution operator for Poisson equation with homogeneous boundary condition, we have the fixed point equation for $z=(w, \mu)$

$$
\begin{equation*}
z=F(z) \tag{12}
\end{equation*}
$$

Now we decompose (12) into finite and infinite dimensional parts:

$$
\left\{\begin{align*}
P_{h}(z) & =P_{h} F(z) \tag{13}\\
\left(I-P_{h}\right)(z) & =\left(I-P_{h}\right) F(z)
\end{align*}\right.
$$

And we use the Newton-like method only for the former part of (13), that is, we define the Newton-like operator

$$
\begin{aligned}
\mathcal{N}_{h}(z) \equiv & P_{h}(z) \\
& -\left[I-F^{\prime}\left(-v_{0}, 0\right)\right]_{h}^{-1}\left(P_{h}(z)-P_{h} F(z)\right),
\end{aligned}
$$

where we assumed that the restriction to $S_{h} \times R$ of the operator $P_{h}\left[I-F^{\prime}\left(-v_{0}, 0\right)\right]: V \times R \rightarrow S_{h} \times R$ has an inverse

$$
\left[I-F^{\prime}\left(-v_{0}, 0\right)\right]_{h}^{-1}: S_{h} \times R \rightarrow S_{h} \times R
$$

This assumption can be numerically checked in the actual computation.

We next define the operator $T: V \times R \rightarrow V \times R$ as

$$
\begin{equation*}
T(z) \equiv \mathcal{N}_{h}(z)+\left(I-P_{h}\right) F(z) \tag{14}
\end{equation*}
$$

Then T becomes a compact map on $V \times R$, and

$$
\begin{equation*}
z=T(z) \Leftrightarrow z=F(z) \tag{15}
\end{equation*}
$$

holds.
Our purpose is to find a fixed point of T in a certain set $Z \subset V \times \mathbf{R}$, which is called a 'candidate set'. Given positive real numbers α and γ we define the corresponding candidate set Z by

$$
\begin{equation*}
Z \equiv Z_{h}+[\alpha] \tag{16}
\end{equation*}
$$

where

$$
\begin{gather*}
Z_{h} \equiv\left\{z_{h} \in S_{h} \times \mathbf{R} \mid\left\|z_{h}\right\|_{V} \leq \gamma\right\} \tag{17}\\
{[\alpha] \equiv\left\{z_{\perp} \in S_{h}^{\perp} \times\{0\} \mid\left\|w_{\perp}\right\|_{W_{\infty, 0}^{1}} \leq \alpha\right\}} \tag{18}
\end{gather*}
$$

Here S_{h}^{\perp} denotes the orthogonal complement of S_{h} in V. If the relation

$$
\begin{equation*}
T(Z) \subset Z \tag{19}
\end{equation*}
$$

holds, by Schauder's fixed point theorem, there exists a fixed point of T in Z. Decomposing $T(Z) \subset Z$ into finite and infinite dimensional parts we have a sufficient conditions for it as follows:

$$
\left\{\begin{array}{r}
\sup _{z \in Z}\left\|\mathcal{N}_{h}(z)\right\|_{V} \leq \gamma \tag{20}\\
\sup _{z \in Z}\left\|\left(I-P_{h}\right) F(z)\right\|_{W_{\infty, 0}^{1}} \leq \alpha .
\end{array}\right.
$$

We find γ and α which satisfy the conditions (20) by iteration method.

After enclosing $\phi_{1}(x)$ and $\phi_{2}(x)$ by the method mentioned above, we evaluate $\phi_{1}(r)$ and $\phi_{2}^{\prime}(r)$ rigorously. Then we can calculate the real values ρ_{1} and ρ_{2} which are solutions of the quadratic equation:

$$
\begin{equation*}
\rho^{2}-\left\{\phi_{1}(r)+\phi_{2}^{\prime}(r)\right\} \rho+1=0 \tag{21}
\end{equation*}
$$

Note that ρ_{1} and ρ_{2} are characteristic multipliers for $L \psi=0$ and characteristic exponents μ_{1} and μ_{2} are calculated by the relation $e^{r \mu_{i}}=\rho_{i} \quad(i=1,2)$. (Note that $\mu_{1}+\mu_{2}=0$ holds.)

Here we mention about the relation between ϕ_{1}, ϕ_{2} and ψ_{1}, ψ_{2}. We define the matrix A by

$$
A=\left(\begin{array}{ll}
\phi_{1}(r) & \phi_{1}^{\prime}(r) \\
\phi_{2}(r) & \phi_{2}^{\prime}(r)
\end{array}\right)
$$

Since we enclose $\phi_{1}(r), \phi_{1}^{\prime}(r), \phi_{2}(r)$ and $\phi_{2}^{\prime}(r)$ by intervals, the matrix A is usually an interval matrix. Then clearly ρ_{1} and ρ_{2} are eigenvalues of A. Let v_{1} and v_{2} be the corresponding eigenvectors for ρ_{1} and ρ_{2}, respectively. Then we can define ψ_{1} and ψ_{2} by

$$
\binom{\psi_{1}}{\psi_{2}} \equiv\left(\begin{array}{ll}
v_{1} & v_{2} \tag{22}
\end{array}\right)^{-1}\binom{\phi_{1}}{\phi_{2}} .
$$

Now we define p_{1} and p_{2} by

$$
\begin{equation*}
\binom{p_{1}}{p_{2}} \equiv\binom{e^{\mu x} \psi_{1}}{e^{-\mu x} \psi_{2}} \tag{23}
\end{equation*}
$$

where $\mu \equiv\left|\mu_{1}\right|=\left|\mu_{2}\right|$ Then we can observe that $p_{i}(x+$ $r)=p_{1}(x)(i=1,2)$ and the ψ_{1} and ψ_{2} defined by (22) satisfy the relation (2).

3. Numerical examples

We consider the case that $q(x)=5 \cos 2 \pi x-9.0$, $r=3$ and $N=2000$ as an example.

The computations were carried out on the DELL Precision WorkStation 340 (Intel Pentium4 2.4GHz) using MATLAB (Ver. 7.0.1). The verification results for $\widetilde{\phi}_{k}(k=1,2)$ are shown in Table 1 and 2 , and the solutions $\widetilde{\phi}_{k}$ are enclosed as

$$
\left\|\widetilde{\phi}_{k}-\widetilde{\phi}_{k, h}\right\|_{V} \leq\left\|v_{0}\right\|_{W_{\infty, 0}^{1}}+\alpha+\gamma \quad(k=1,2)
$$

Table 1: Verification Results for $\widetilde{\phi}_{1}$

$\left\\|v_{0}\right\\|_{W_{\infty, 0}}$	γ	α
0.1472	0.4842	0.0204

Table 2: Verification Results for $\widetilde{\phi}_{2}$

$\left\\|v_{0}\right\\|_{W_{\infty, 0}^{1}}$	γ	α
0.0061	0.0037	1.5188×10^{-4}

From these verified results we could obtain

$$
\begin{aligned}
& \kappa \in\left[-9.4586 \times 10^{-6},-9.0384 \times 10^{-6}\right] \\
& \tau \in\left[2.5080 \times 10^{-7}, 2.5392 \times 10^{-7}\right]
\end{aligned}
$$

and finally we obtain

$$
\mu \in[0.73995353,0.73995485]
$$

which derives the aimed fundamental solutions ψ_{1} and ψ_{2}.

Figure 1: Approximate solution for ϕ_{1}

Figure 2: Approximate solution for ϕ_{2}

Figure 3: Approximate solution for ψ_{1}

Figure 4: Approximate solution for ψ_{2}

References

[1] Eastham, M. S. P., The Spectral Theory of Periodic Differential Equations, Scottish Academic Press (1973).
[2] Nagatou, K., A numerical method to verify the elliptic eigenvalue problems including a uniqueness property, Computing 63 (1999), pp. 109-130.
[3] Nakao, M. T. and Watanabe, Y., An efficient approach to the numerical verification for solutions of the elliptic differential equations, Numerical Algorithms 37 (2004), pp. 311-323.
[4] Nakao, M. T., Hashimoto, K. and Watanabe, Y., A numerical method to verify the invertibility of linear elliptic operators with applicaions to nonlinear problems, Computing 75 [1] (2005), pp. 1-14.
[5] Nakao, M. T., Yamamoto, N. and Nagatou, K., Numerical Verifications for eigenvalues of secondorder elliptic operators, Japan Journal of Industrial and Applied Mathematics, Vol. 16 No. 3 (1999), pp. 307-320.
[6] Schultz, M. H., Spline Analysis, Prentice-Hall, London (1973).
[7] Yosida, K., Functional Analysis, Springer-Verlag, Berlin (1995).

