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Abstract—We present a method to enclose funda-
mental solutions of linear elliptic operators, especially
for one dimensional Schrödinger operators which have
periodic potentials. Our method is based on Floquet
theory and Nakao’s verification method for nonlinear
equations. We show how to enclose fundamental solu-
tions together with characteristic exponents and give
a numerical example.

1. Introduction

We consider to compute fundamental solutions for
the following equation

Lψ ≡ −ψ′′ + q(x)ψ = 0, x ∈ R, (1)

where we assume that q(x) ∈ L∞(R) is a periodic
function with a period r.

By Floquet Theory there exist fundamental solu-
tions ψ1(x), ψ2(x) of Lψ = 0 s.t.

ψ1(x) = eµxp1(x), ψ2(x) = e−µxp2(x), (2)

where μ is the characteristic exponent and p1(x), p2(x)
are periodic functions. Our aim is to compute
ψ1(x), ψ2(x) with guaranteed accuracy.

Once after we obtained such enclosed fundamen-
tal solutions, we may use them for another problem.
For example, using those guaranteed fundamental so-
lutions we define the Green’s function G(x, y, λ) [1] for
−∞ < x, y <∞ by

G(x, y, λ) =
{
ψ1(x)ψ2(y)/W (ψ1, ψ2)(x) (x ≤ y)
ψ2(x)ψ1(y)/W (ψ1, ψ2)(x) (x ≥ y)

(3)
where W (ψ1, ψ2)(x) ≡ ψ1(x)ψ′

2(x) − ψ′
1(x)ψ2(x)

stands for the Wronskian. Then we have [1]

L−1f =
∫
R

G(x, y, λ)f(y)dy. (4)

This kind of expression for L−1 is useful to execute
another verification method related to the operator L.

2. Verification for fundamental solutions

In order to verify the fundamental solutions ψ1 and
ψ2 in (1) satisfying (2), it is sufficient to enclose the
functions φ1 and φ2 which are solutions for the follow-
ing equations:{ −φ′′1 + qφ1 = 0 in [0, r]

φ1(0) = 1, φ′1(0) = 0 (5){ −φ′′2 + qφ2 = 0 in [0, r]
φ2(0) = 0, φ′2(0) = 1 (6)

Let Sh denote the set of continuous and piecewise
linear polynomials on [0, r] with uniform mesh 0 =
x0 < x1 < · · · < xN = r and mesh size h. We define a
function space

V ≡W 1
∞,0(0, r) ∩

(
N∧

i=0

C1[xi, xi+1]

)
,

and we define the norm for (w,μ) ∈ V × R by

‖(w,μ)‖V ×R ≡ max{‖w‖W 1
∞,0

, |μ|},
where W 1∞,0(0, r) is a usual Sobolev space defined by

W 1
∞,0(0, r) ≡ {φ ∈W 1

∞,0(0, r) | φ(0) = φ(r) = 0}
Setting φ1(r) = κ, φ2(r) = τ and transforming

φ̃1(x) ≡ φ1(x) +
1 − κ

r
x− 1, φ̃2(x) ≡ φ2(x) − τ

r
x,

we consider the following problems:

Find (φ̃1, κ) ∈ V × R s.t.⎧⎪⎪⎪⎨⎪⎪⎪⎩
−φ̃′′1 + q

(
φ̃1 +

κ− 1
r

x+ 1
)

= 0 in [0, r]

φ̃1(0) = φ̃1(r) = 0

φ̃′1(0) =
1 − κ

r

(7)

Find (φ̃2, τ) ∈ V × R s.t.⎧⎪⎪⎨⎪⎪⎩
−φ̃′′2 + q

(
φ̃2 +

τ

r
x
)

= 0 in [0, r]

φ̃2(0) = φ̃2(r) = 0
φ̃′2(0) = 1 − τ

r

(8)
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Let Ph0 : V → Sh denote the H1
0 -projection defined

by

(∇(u− Ph0u),∇v)L2 = 0 for all v ∈ Sh,

and define the projection Ph : V ×R → Sh ×R by

Ph(u, λ) ≡ (Ph0u, λ).

In the below we describe how to enclose (φ̃1, κ) ∈
V × R in (7). The enclosure for (φ̃2, τ) ∈ V × R is
analogous.

Now, let (φ̃1,h, κh) ∈ Sh × R be a finite element
solution of (7). We will verify the solution (φ̃1, κ) in
the neighborhood of (φ̄1, κh) satisfying⎧⎨⎩−φ̄1

′′ = −q
(
φ̃1,h +

κ− 1
r

x+ 1
)

in (0, r),

φ̄1(x) = 0 for x = 0, r.
(9)

Notice that φ̄1 ∈ W 1∞,0(0, r)
⋂
W 2∞,0(0, r), and

φ̃1,h = Ph0φ̄1. Defining w = φ̃1 − φ̄1, v0 = φ̄1 − φ̃1,h,
μ = κ− κh, we have⎧⎪⎪⎨⎪⎪⎩

−w′′ = −q
(
w + v0 +

μ

r
x
)

in (0, r)

w(0) = w(r) = 0

w′(0) =
1 − μ− κh

r
− v′0(0) − φ̃′1,h(0)

(10)
Thus using the following compact map on V ×R

F (w,μ) ≡
(
(−Δ)−1

{
−q
(
w + v0 +

μ

r
x
)
,

μ+ w′(0) − 1 − μ− κh

r

+ v′0(0) + φ̃′1,h(0)
)
, (11)

where (−Δ)−1 means the solution operator for Poisson
equation with homogeneous boundary condition, we
have the fixed point equation for z = (w,μ)

z = F (z). (12)

Now we decompose (12) into finite and infinite di-
mensional parts:{

Ph(z) = PhF (z),
(I − Ph)(z) = (I − Ph)F (z). (13)

And we use the Newton-like method only for the for-
mer part of (13), that is, we define the Newton-like
operator

Nh(z) ≡ Ph(z)
−[I − F ′(−v0, 0)]−1

h (Ph(z) − PhF (z)),

where we assumed that the restriction to Sh×R of the
operator Ph[I − F ′(−v0, 0)] : V ×R → Sh ×R has an
inverse

[I − F ′(−v0, 0)]−1
h : Sh ×R → Sh ×R.

This assumption can be numerically checked in the
actual computation.

We next define the operator T : V ×R→ V ×R as

T (z) ≡ Nh(z) + (I − Ph)F (z). (14)

Then T becomes a compact map on V ×R, and

z = T (z) ⇔ z = F (z) (15)

holds.
Our purpose is to find a fixed point of T in a cer-

tain set Z ⊂ V × R, which is called a ‘candidate set’.
Given positive real numbers α and γ we define the
corresponding candidate set Z by

Z ≡ Zh + [α], (16)

where

Zh ≡ {zh ∈ Sh × R | ‖zh‖V ≤ γ}, (17)

[α] ≡ {z⊥ ∈ S⊥
h × {0} | ‖w⊥‖W 1

∞,0
≤ α}. (18)

Here S⊥
h denotes the orthogonal complement of Sh in

V . If the relation

T (Z) ⊂ Z (19)

holds, by Schauder’s fixed point theorem, there exists
a fixed point of T in Z. Decomposing T (Z) ⊂ Z into
finite and infinite dimensional parts we have a suffi-
cient conditions for it as follows:⎧⎨⎩

sup
z∈Z

‖Nh(z)‖V ≤ γ

sup
z∈Z

‖(I − Ph)F (z)‖W 1
∞,0

≤ α.
(20)

We find γ and α which satisfy the conditions (20) by
iteration method.

After enclosing φ1(x) and φ2(x) by the method men-
tioned above, we evaluate φ1(r) and φ′2(r) rigorously.
Then we can calculate the real values ρ1 and ρ2 which
are solutions of the quadratic equation:

ρ2 − {φ1(r) + φ′2(r)}ρ + 1 = 0. (21)

Note that ρ1 and ρ2 are characteristic multipliers for
Lψ = 0 and characteristic exponents μ1 and μ2 are
calculated by the relation erµi = ρi (i = 1, 2). (Note
that μ1 + μ2 = 0 holds.)

Here we mention about the relation between φ1, φ2

and ψ1, ψ2. We define the matrix A by

A =
(
φ1(r) φ′1(r)
φ2(r) φ′2(r)

)
.
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Since we enclose φ1(r), φ′1(r), φ2(r) and φ′2(r) by in-
tervals, the matrix A is usually an interval matrix.
Then clearly ρ1 and ρ2 are eigenvalues of A. Let v1
and v2 be the corresponding eigenvectors for ρ1 and
ρ2, respectively. Then we can define ψ1 and ψ2 by(

ψ1

ψ2

)
≡ ( v1 v2 )−1

(
φ1

φ2

)
. (22)

Now we define p1 and p2 by(
p1

p2

)
≡
(
eµxψ1

e−µxψ2

)
, (23)

where μ ≡ |μ1| = |μ2| Then we can observe that pi(x+
r) = p1(x) (i = 1, 2) and the ψ1 and ψ2 defined by (22)
satisfy the relation (2).

3. Numerical examples

We consider the case that q(x) = 5 cos 2πx − 9.0,
r = 3 and N = 2000 as an example.

The computations were carried out on the DELL
Precision WorkStation 340 (Intel Pentium4 2.4GHz)
using MATLAB (Ver. 7.0.1). The verification results
for φ̃k (k = 1, 2) are shown in Table 1 and 2, and the
solutions φ̃k are enclosed as

‖φ̃k − φ̃k,h‖V ≤ ‖v0‖W 1
∞,0

+ α+ γ (k = 1, 2).

Table 1: Verification Results for φ̃1

‖v0‖W 1
∞,0

γ α

0.1472 0.4842 0.0204

Table 2: Verification Results for φ̃2

‖v0‖W 1
∞,0

γ α

0.0061 0.0037 1.5188×10−4

From these verified results we could obtain

κ ∈ [−9.4586 × 10−6,−9.0384 × 10−6]
τ ∈ [2.5080 × 10−7, 2.5392 × 10−7]

and finally we obtain

μ ∈ [0.73995353, 0.73995485],

which derives the aimed fundamental solutions ψ1 and
ψ2.
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Figure 1: Approximate solution for φ1
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Figure 2: Approximate solution for φ2
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Figure 3: Approximate solution for ψ1
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Figure 4: Approximate solution for ψ2
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