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Abstract—Harmonic balance (HB) method is well
known for analyzing periodic oscillations on nonlinear cir-
cuit systems. Because the HB method is an approximation
method, approximated solutions have been guaranteed by
an error bound. However, its computation is very time-
consuming compared with solving the HB equation. This
paper proposes a fast computational method of an approxi-
mated error bound using an algebraic representation based
on Gröbner base. The proposed method decrease the com-
putational cost of the error bound considerably. Using the
proposed method, we can guarantee the solutions as fast as
solving the HB equation.

1. Introduction
Harmonic balance (HB) method is well known for an-

alyzing periodic oscillations on nonlinear circuit systems
[1, 2]. A circuit equation is transposed to simultaneous al-
gebraic equation called HB equation due to an approxima-
tion by truncated Fourier series of variables. Because the
HB method, which ignores high frequency components,
is the approximation method, approximated solutions of
the HB equation have been guaranteed by an error bound
[3–5]. However, the computation of the error bound is very
time-consuming compared with solving the HB equation.

This paper proposes a fast computational method of an
approximated error bound for the HB method using an al-
gebraic representation of the error bound. The report [8]
presents a method to obtain the algebraic representation us-
ing Gröbner base [6,7]. However, the computational cost of
the Gröbner base is highly dependent on the complexity of
the equations of the error bound. Especially, the computa-
tional cost increases exponentially according to the expan-
sion of the number of considered frequency components.
Thus, the number of the considered frequency components
makes the method in [8] difficult.

In order to overcome the difficulty, we propose an effi-
cient method to obtain the algebraic representation of the
error bound using transformations of variables. The pro-
posed method is not dependent on the number of the con-
sidered frequency components. Using the algebraic repre-
sentation of the error bound, we can approximate the error
bound to the quadratic form. The quadratic approximation
decreases the computational cost of the error bound consid-
erably. Using the proposed method, we can guarantee the
solutions as fast as solving the HB equation.

Section 2 describes the HB method, and Section 3 re-
views the method to obtain the error bound for the HB
method. In Section 4, we propose the efficient method to
obtain the algebraic representation of the error bound and
the quadratic approximation of the error bound using the al-
gebraic representation. In Section 5, we apply the proposed
method to Duffing equation as example. Finally, conclu-

sions are drawn in Section 6.

2. Harmonic Balance (HB) Method
We consider a nonlinear feedback system shown in Fig-

ure 1. The circuit equation of the system is written by
u(τ) = G(s) {e(τ) − N[u(τ)]} , (1)

N[u(τ)] =
p∑

i=0

c2i+1u2i+1, (2)

where s = d/dτ, N[u] is a polynomial type nonlinear ele-
ment and a monotone increasing function of u, and transfer
function G(s) has a low-pass characteristics.

Assuming that Eq.(1) has a periodic solution, we write

u(τ) ≡
∞∑

k=0

<
[
ẋkejkτ

]
=

∞∑
k=0

<
[
(xkr + jxks)ejkτ

]
, (3)

where ẋk(τ) ∈ C, C is a set of complex numbers, x0s = 0
and <[·] denotes the real part of ·. We assume that the
above solution can be approximated by truncated Fourier
series with n frequency components

uL(τ) = KLu(τ) =
n∑

k=0

<
[
(xkr + jxks)ejkτ

]
, (4)

where KL is a projection operator that expresses the trun-
cation of the Fourier series. The substitution of Eq.(4) into
Eq.(1) gives

n∑
k=0

<
[{

ẋk −G(jk) (ėk + ẏk)
}
ejkτ

]
= 0, (5)

where

ẏk =
1
π

∫ 2π

0
N[u(τ)]e−jkτdτ, ẏ0 =

1
2π

∫ 2π

0
N[u(τ)]dτ,

ėk =
1
π

∫ 2π

0
e(τ) e−jkτdτ, ė0 =

1
2π

∫ 2π

0
e(τ)dτ,

and snejτ = (jk)nejτ is satisfied. By this relation, HB equa-
tion is written by

f (x) ≡ ( f0r, f1r, f1s, . . . , fnr, fns)T = 0 ∈ R2n+1, (6)
fkr≡<

[
ẋk−G(jk) {ėk+ẏk}

]
, f0r=<

[
ẋ0−G(0) {ė0+ẏ0}

]
,

fks≡ =
[
ẋk−G(jk) {ėk+ẏk}

]
, f0s=0,

x ≡ (x0r, x1r, x1s, . . . , xnr, xns)T, k = 0, . . . , n,
where R is a set of real numbers and =[·] denotes the imag-
inary part of ·.

NG(s)
e(τ) u(τ)

Figure 1: Nonlinear feedback system.
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3. Error Bound of HB Method

3.1. Estimation of High Frequency Components

We define a projection operator KH;

uH(τ) = KHu(τ) =
∞∑

k=n+1

<
[
(xkr + jxks)ejkτ

]
, (7)

u(τ) = uL(τ) + uH(τ), KL + KH = I,
where I is an identity operator. Applying the operator KH
to Eq.(1), we obtain

uH(τ) = −KHG(s)N[uL(τ) + uH(τ)]. (8)
We define λ as∥∥∥∥∥dN[u(τ)]

du

∥∥∥∥∥∞ ≤ λ, ∀u ∈ {u | ‖u‖1 ≤ c}, (9)

where c denotes a certain value and norms are defined by

l inorm : ‖u(τ)‖i ≡
{∑∞

k=0

(√
x2

kr + x2
ks

)i
}1/i

, i = 1, 2, (10)

L∞norm : ‖u(τ)‖∞ ≡ supτ∈[0,2π) |u(τ)|. (11)

Using mean value theorem and contraction mapping the-
orem, we can obtain the estimation of the high frequency
components for l1 and l2 norms;

‖uH‖i ≤
‖F‖∞

1 − ‖F‖∞
‖uL‖i, i = 1, 2, (12)

where ‖F‖∞ ≡ λ sup|k|>n

∣∣∣G(jk)
∣∣∣ < 1. Using Eq.(12), we

write λ as

λ =

p∑
i=0

(2i + 1)c2i+1

(
1 +

‖F‖∞
1 − ‖F‖∞

)2i

‖uL‖12i. (13)

Then, Eq.(13) is rewritten by
feb1(λ, x) = λ(1 − λH)2p

−
p∑

i=0

(2i+1)c2i+1(1−λH)2(p−i)

 n∑
k=0

√
x2

kr+x2
ks

2i

=0, (14)

where H = sup|k|>n

∣∣∣G(jk)
∣∣∣ ∈ R is constant.

3.2. Error Bound by Homotopy Invariance

In order to guarantee the solutions of the HB equation,
we consider the equation which provides the HB equation;

FH(uL)≡G(s)−1uL(τ)−{e(τ)+KLN[uL(τ)]}=0. (15)
Using homotopy invariance theorem and Eq.(15), we ob-
tain the equation of the error bound for the HB method;

‖FH(uL)‖2 =
λ‖F‖∞

1 − ‖F‖∞
‖uL‖2. (16)

We rewrite the Eq.(16) as follows;

feb2(λ, x) = λ4H2
n∑

k=0

(
x2

kr + x2
ks

)
− (1−λH)2

n∑
k=0

(
f 2
kr+ f 2

ks

)
= 0. (17)

The equation (17) is an algebraic equation.
The equations obtained by Eq.(14) and Eq.(17) are the

algebraic equations with λ and x. Using the elimination of
λ by the Gröbner base of lexicographic order λ � xkr (or
λ � xks) from the equations [6, 7], we can obtain the alge-
braic representation geb(x) of the error bound for the HB
method in 2n + 1 dimensional space [8]. However, Eq.(14)
and Eq.(17) become complicated according to the expan-
sion of the number of considered frequency components.
Thus, the algebraic representation geb(x) can not be calcu-
lated by the method in [8] when we consider more than 2
frequency components.

4. Algebraic Representation of Error Bound
4.1. Efficient Method Using Transformations of Vari-

ables
In order to overcome the difficulty of the method in [8],

we propose an efficient method to obtain the algebraic rep-
resentation of the error bound by transformations of vari-
ables. Because the number n of the considered frequency
components complicates only the norms in Eq.(14) and
Eq.(17), we transform the norms into new variables;

α(x) ≡ ‖uL‖1 =
n∑

k=0

√
x2

kr+x2
ks, β(x) ≡ ‖uL‖22 =

n∑
k=0

(
x2

kr+x2
ks

)
,

γ(x) ≡ ‖FH(uL)‖22 =

n∑
k=0

(
f 2
kr(x) + f 2

ks(x)
)
. (18)

Thus, Eq.(14) and Eq.(17) are represented by

feb1(λ, α)=λ(1−λH)2p−
p∑

i=0

(2i+1)c2i+1 (1−λH)2(p−i) α2i=0, (19)

feb2(λ, β, γ)=λ4H2β − (1−λH)2γ = 0. (20)

Eq.(19) and Eq.(20) do not depend on n because only the
new variables α, β, γ change if n changes.

Then, geb(α, β, γ) is obtained by the elimination of λ us-
ing the Gröbner base. Since Eq.(19) and Eq.(20) are sim-
pler than Eq.(14) and Eq.(17), the computational cost of
geb(α, β, γ) is less than the cost of geb(x) in [8]. Finally,
the algebraic representation of the error bound geb(x) is ob-
tained by the substitution of α, β, γ into the geb(α, β, γ).
Thus, the algorithm is written by

S1. We give the algebraic equations feb1(λ, α) = 0 and
feb2(λ, β, γ) = 0.

S2. We obtain geb(α, β, γ) by the elimination of λ using on
the Gröbner base of order λ � (α, β, γ) from feb1 and
feb2.

S3. We determine the variables α, β and γ based on the
number n of the considered frequency components.

S4. We obtain the algebraic representation of the error
bound geb(x) by the substitution of Eq.(18) into the
geb(α, β, γ).

The algebraic representation geb(α, β, γ) is not dependent
on n due to the independence of Eq.(19) and Eq.(20) on n.
That is, we can obtain the algebraic representation of the
error bound even if we consider many frequency compo-
nents.
4.2. Quadratic Approximation of Error Bound Using

Algebraic Representation
In order to estimate the error bound, we must project

the error bound to the complex plane of a target frequency
component. The report [5] evaluates the projection of the
error bound by the sufficient condition. However, the com-
putation of the projection is very time-consuming com-
pared with solving the HB equation. For example, the
method in [5] requires to solve the simultaneous equations
many times.

This paper presents a fast computational method to ob-
tain the projection of the error bound using the algebraic
representation. The error bound is a neighborhood of the
solution of the HB equation, and resembles an ellipsoidal
body, i.e., a quadratic form. Thus, we can approximate the
error bound to the quadratic form using variations of the
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solution of the HB equation. The quadratic approximation
of the error bound enables to express its projection as the
quadratic form.

Let us consider that the error bound is pro-
jected to a complex plane (x1, x2) where x1, x2 ∈
{x0r, x1r, x1s, . . . , xnr, xns} and we rewrite the variables
x0r, x1r, x1s, . . . , xnr, xns except for x1, x2 to x3, x4, . . . , xN
where N = 2n + 1. Using the variations ∆x1,∆x2, . . . ,∆xN
of the solution of the HB equation and Taylor expansion,
we obtain the quadratic approximation geb(x) of the error
bound as follows;

geb(x) ≈ g∆eb(∆x1,∆x2, . . . ,∆xN)

=

N∑
i=1

aii∆x2
i +2

N∑
i=1

N∑
j=i+1

ai j∆xi∆x j+2
N∑

i=1

a0i∆xi+a00.(21)

Then, the quadratic approximation is written by
g∆eb(∆x) = ∆xT A∆x = 0, (22)

where

A ≡


a00 a01 · · · a0N

a01 a11 · · · a1N
...
...
. . .
...

a0N a1N · · · aNN

 ∈ R(N+1)×(N+1), ∆x ≡


1
x1
...

xN

 .
In order to obtain the projection of the approximated er-

ror bound g∆eb(∆x), we decompose A and ∆x into

A=
[

A1 A2

AT
2 A3

]
, ∆x=

[
∆x1
∆x2

]
, ∆x1=

 1
x1
x2

 , ∆x2=


x3
...

xN

 ,(23)

where partial matrices of A denote A1 ∈ R3×3, A2 ∈
R(N−2)×3 and A3 ∈ R(N−2)×(N−2), respectively. Because the
projection of g∆eb(∆x) satisfies

∂g∆eb(∆x)
∂∆xk

= 0, k = 3, . . . ,N, (24)

we obtain a relation;
AT

2∆x1 + A3∆x2 = 0. (25)
Thus, the projection of the approximated error bound is
represented by

∆xT A∆x =
(
∆xT

1 ,∆xT
2

)T
[

A1∆x1 + A2∆x2
0

]
= ∆xT

1 A1∆x1 + ∆xT
1 A2∆x2

= ∆xT
1

(
A1 − A2 A−1

3 AT
2

)
∆x1 = 0. (26)

The quadratic approximation algorithm is written by

S1. We calculate the algebraic representation geb(x) of the
error bound using the Gröbner base.

S2. We set the target complex plane (x1, x2) and other vari-
ables x3, . . . , xN .

S3. We obtain algebraic representations of the elements
ai j, (i, j = 0, . . . ,N, i ≤ j) of the matrix A with the so-
lution of the HB equation and the circuit parameters.

S4. We determine ai j by the substitution of the given solu-
tion and parameters into the algebraic representations
ai j, (i, j = 0, . . . ,N, i ≤ j).

S5. We obtain the projection of the approximated error
bound by A1 − A2 A−1

3 AT
2 .

Using the approximated error bound, the projection of
the error bound can be plotted easily because the number of
the variables in Eq.(26) is only 2 and the maximum degree
of Eq.(26) is 2.

5. Example
5.1. Duffing Equation

We apply the proposed method to Duffing equation;
d2u(τ)

dτ2 + µ
du(τ)

dτ
+ u3 = E cos τ, (27)

where, the Duffing equation can be described as Eq.(1);

G(s) =
1

s2 + µs
, N[u(τ)] = u3. (28)

We apply the HB method to Eq.(27). We assume that the
direct current and even harmonics equal zero x0r = 0, xkr =
xks = 0, (1 ≤ k ≤ n, k = 0 mod 2) for simplicity.
5.2. Algebraic Representation of Error Bound

The equations feb1 and feb2 is written by
feb1(λ, α) = λ(1 − λH)2 − 3α2 = 0, (29)

feb2(λ, β, γ) = λ4H2β − (1 − λH)2γ = 0. (30)
Thus, the following algebraic representation geb(α, β, γ) of
the error bound is obtained by the elimination of λ using
the Gröbner base of order λ � (α, β, γ);

geb(α, β, γ) = 9α4H6γ3 − 135α4βH4γ2

−6α2βH3γ2 − 270α6β2H3γ + 225α4β2H2γ

−30α2β2Hγ + β2γ − 81α8β3H2 = 0. (31)
In order to compare the computational cost between the

proposed method and the method in [8], the computational
cost of the error bound using the Gröbner base of λ � α �
β � γ and λ � x1r � x1s is shown in Table 1 where n = 1.
Thus, we can confirm an efficiency of the proposed method.

Further, Eq.(31) is not dependent on the number of the
considered frequency components. Thus, we can obtain the
algebraic representation geb(x) even if we consider many
frequency components.
5.3. Quadratic Approximation of Error Bound

We apply the quadratic approximation of the error bound
to this example. Let us consider x1 = x1r, x2 = x1s, x3 =
x3r, . . . , xN−1 = xnr, xN = xns, and f1 = f1r, f2 = f1s, f3 =
f3r, . . . , fN−1 = fnr, fN = fns where N = 2n. The matrix A
of the approximated error bound is represented by

a00=−81H2α8
0β0, (32)

a0i=−81H2α8
0 xi + 4α7

0a0iβ0, (33)

aii= (225α4
0H2−30α4

0H−270α6
0H3+1)

N∑
k=1

(
∂ fk(µ, E)
∂xi

)2

−81H2α6
0(16α0α0i xi + 8α0αiiβ0 + 28α2

0iβ0 + α
2
0), (34)

ai j= (225α4
0H2−30α4

0H−270α6
0H3+1)

N∑
k=1

(
∂ fk(µ, E)
∂x j

∂ fk(µ, E)
∂xi

)
−81H2α6

0(8α0α0i x j + 8α0α0 j xi + 28α0iα0 jβ0 + 4α0αi jβ0), (35)

Table 1: Comparison of computational cost between pro-
posed method and method in [8] (n = 1).

Order of Computation Required
Method Gröbner base time [s] memory [MB]

Method in [8] λ � x1r � x1s 7425 956
Proposed method λ � α � β � γ 0.007 1.09

Calculated by a PC with Xeon 3.06GHz CPU.
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 0.345

 0.35

 0.355

 0.36

-0.303 -0.3 -0.297 -0.294 -0.291

x 1
s

x1r

n=3

n=5

n=7

(overlapping)

Method in [5]
Proposed method
Solutions of HB equation

Figure 2: Projections of error bound for HB method on the
(x1r, x1s) plane (n = 3, 5, 7, µ = 1, and E = 0.6).

where

α0 =
∑n

k=1

√
x2

2k+x2
2k+1, α0i =

xi
α̂i
, αii =

xi
2α̂i
− x2

i
2α̂i

3 , β0 =
∑N

k=1 x2
k ,

αi j =

{
− xi x j

2α̂i
|i − j| = 1

0 |i − j| , 1
, α̂i =


√

x2
i + x2

i+1 i = 1 mod 2√
x2

i−1 + x2
i i = 0 mod 2

,

H = 1

(n+1)
√

(n+1)2+µ2
, i = 1, . . . ,N, j = 2, . . . ,N, i < j.

In order to confirm the validity of the approximation, the
projections by the proposed method and the method in [5]
are shown in Figure 2 where µ = 1, E = 0.6, n = 3, 5, 7
and the solutions of the HB equation are overlapping. The
projection of the approximated error bound is close to the
projection in [5].

Moreover, the projection of the approximated error
bound with the parameter E changing from 0.3 to 0.7 is
shown in Figure 3 where µ = 1 and n = 3. Because the
elements (32), (33), (34) and (35) of the matrix A contain
the circuit parameters symbolically, the approximated error
bound can be easily obtained even if we change the circuit
parameters such as Figure 3.

Further, the computational time of the proposed method
and the method in [5] for n = 3, 5, 7, 19 is shown in Table
2 when we vary the parameters µ from 1 to 5, E from 0.3
to 0.7. Additionally, we also show the solving time of the
HB equation in Table 2. Although the proposed method in
Table 2 does not contain the computational cost of geb(x),
geb(x) is calculated only once and the computational cost
is very low such as Table 1. Thus, we can confirm that
the proposed method reduces the computational cost of
the error bound dramatically. Although the conventional
method is very time-consuming compared with solving the
HB equation, the proposed method guarantees the solutions
as fast as solving the HB equation.

6. Conclusion
This paper proposed a fast computational method of an

error bound for HB method using an algebraic representa-
tion of the error bound based on Gröbner base. In order to
obtain the algebraic representation of the error bound, we
presented an efficient method using transformations of vari-
ables. The proposed method does not depend on the num-
ber of considered frequency components. The algebraic

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-0.35 -0.3 -0.25 -0.2 -0.15

x 1
s

x1r

E=0.3

E=0.7

Approximated error bound
Solutions of HB equation

Figure 3: Projection of approximated error bound with pa-
rameter E changing from 0.3 to 0.7 (n = 3 and µ = 1).

Table 2: Computational time of projection of error bound
[s] (µ varied from 1 to 5 and E varied from 0.3 to 0.7, using
Newton method with 40 × 100 × 32 points).

Method n = 3 n = 5 n = 7 n = 19
HB method 5.928 9.080 15.101 58.188

Method in [5] 461.761 685.111 1028.851 3032.523
Proposed method 20.694 22.652 23.607 46.960

Calculated by a PC with Xeon 3.06GHz CPU.

representation enables to approximate the error bound to a
quadratic form. Further, we confirmed that the quadratic
approximation enables to guarantee the solutions as fast as
solving the HB equations.
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