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Abstract—As solution techniques to solve numerical
constraint satisfaction problems, consistency techniques
such as box consistency are well-known. In this paper, the
idea of the box consistency is applied to the problem of
finding all solutions of nonlinear equations. A new algo-
rithm is proposed, where boxes that appear in the algorith-
mic process are narrowed using linear programming such
that no solution is lost. It is shown that all solutions can be
found very efficiently by the proposed algorithm.

1. Introduction

Many application problems ranging from robotics to
chemistry and geometry can be seen as numerical con-
straint satisfaction problems (NCSPs) [1]–[7]. An NCSP
is defined by a set of variables and a set of nonlinear con-
straints on the variables. The domain of the variables are
closed intervals of real values. NCSPs can be used to ex-
press a large class of problems including the problem of
finding all solutions of nonlinear equations. The goal is to
find sharp boxes that approximate the solutions.

Correct approximations of the solutions can be obtained
by interval-based solvers; most of them are based on a
branch and prune algorithm. This algorithm interleaves do-
main pruning and domain splitting, until a given precision
of the domains is reached. In most interval solvers, the
pruning step is based on local consistencies such as box
consistency [1]–[7].

In this paper, we introduce the idea of the box consis-
tency to the problem of finding all solutions of a system of
nonlinear equations:

f (x) = 0 (1)

contained in an initial box1 D in Rn, where x =

(x1, x2, · · · , xn)T ∈ Rn and f : Rn → Rn. The basic idea of
the box consistency is narrowing a box (variable domain)
as much as possible using interval extension such that no
solution is lost. However, the conventional box consistency
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1An n-dimensional rectangular region with the sides parallel to the
coordinate axes will be called a box.

does not achieve tight narrowing because interval extension
often causes overestimating.

In this paper, we combine the idea of the box consistency
with the linear programming (LP) techniques proposed in
[8]–[10], and propose a new narrowing algorithm termed
LP narrowing. By introducing the LP narrowing to the in-
terval algorithms such as the Krawczyk-Moore algorithm,
all solutions can be found very efficiently.

2. Background of the Study

Many real-world problems require solving NCSPs. An
NCSP is a triplet (V,C,D) that consists of a finite setV
of variables taking their values in domainsD over the re-
als and subject to a finite setC of numerical constraints. A
tuple of values assigned to the variables such that all the
constraints are satisfied is called a solution. In practice, nu-
merical constraints are often equalities or inequalities ex-
pressed in factorable form, that is, they can be represented
by elementary functions such as+, −, ×, ÷, log, exp, sin,
cos, · · · . The problem of finding all solutions of nonlinear
equations, which we focus in this paper, is a class of the
NCSPs.

Many solution techniques have been proposed to solve
NCSPs [1]–[7], and most of them are based on interval
arithmetic or its variants [11],[12]. In the last ten years,
there have been elaborate uses of interval arithmetic to de-
vise narrowing algorithms, a possible variant is the box
consistency. The narrowing algorithm associated with the
box consistency returns a sub-box in the initial box that
is box-consistent [1]–[7] (or, more informally, the largest
sub-box in the initial box that cannot be narrowed further).
Actually, since the largest sub-box cannot be obtained in
general, its approximation is found by deleting sub-boxes
containing no solution that are located in a lower bound
and an upper bound of each interval of the initial box by
using interval extension2. An example of the box consis-
tency whenn = 2 is illustrated in Fig. 1(a).

However, the conventional box consistency does not

2The interval extension is calculated by replacing the variablexi with
the interval [ai ,bi ] and by replacing the arithmetic operations with the
corresponding interval operations [11]. The interval extension is often
used as a nonexistence test for solutions because it contains the range of
the original nonlinear function.
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Figure 1: Narrowing a box by box consistecy.

achieve tight narrowing. One of the reasons is that inter-
val extension often causes overestimating. Another reason
is that the box consistency handles the constraints indepen-
dently, so it cannot narrow a box as shown in Fig. 1(b).
In this paper, we introduce LP to narrow a box because it
handles all the constraints at the same time.

3. Basic Algorithm

In this section, we first summarize the basic procedures
of interval algorithms [11],[12].

An n-dimensional interval vector with components
[ai ,bi ] (i = 1,2, · · · ,n) is denoted by

X = ([a1,b1], [a2,b2], · · · , [an,bn])T . (2)

Geometrically,X is ann-dimensional box.
In interval algorithms, the following procedure is per-

formed recursively, beginning with the initial boxX = D
[11]. At each level, we analyze the boxX. If there is no
solution of (1) inX, then we exclude it from further con-
sideration. If there is a unique solution of (1) inX, then
we compute it by some iterative method. In the field of
interval analysis, computationally verifiable sufficient con-
ditions for nonexistence, existence and uniqueness of a so-
lution in X have been developed. If these conditions are not
satisfied and neither existence nor nonexistence of a solu-
tion in X can be proved, then splitX in some appropriately
chosen coordinate direction to form two new boxes; we
then continue the above procedure with one of these boxes,
and put the other one on a stack for later consideration.
Thus, provided the number of solutions of (1) contained in
D ⊂ Rn is finite, we can find them all with mathematical
certainty. This algorithm is a kind of the branch and prune
algorithm.

Next, we summarize the powerful nonexistence test pro-
posed in [8]–[10].

For the simplicity of discussion, in this paper we assume
that (1) can be represented as

f (x)
4
= Pg(x) + Qx− r = 0 (3)

as assumed in [8]–[10], whereg(x) = [g1(x1),g2(x2),
· · · ,gn(xn)]T : Rn → Rn is a nonlinear function with com-
ponent functionsgi(xi) : R1 → R1 (i = 1,2, · · · ,n), P and

Q aren×n constant matrices, andr = (r1, r2, · · · , rn)T ∈ Rn

is a constant vector. Namely, we divide the system into the
nonlinear termPg(x), the linear termQx, and the constant
term r. Note that the discussion in this paper is easily ex-
tended to more general systems of nonlinear equations; for
details, see [8].

Let the interval extension ofgi(xi) over [ai ,bi ] be [ci ,di ].
Then, we introduce auxiliary variablesyi and putyi =

gi(xi). If ai ≤ xi ≤ bi , thenci ≤ yi ≤ di .
Now we consider the LP problem:

max (arbitrary constant)

subject to
Py+ Qx− r = 0

a ≤ x ≤ b

c ≤ y ≤ d

(4)

wherey = (y1, y2, · · · , yn)T ∈ Rn anda ≤ x ≤ b implies that
ai ≤ xi ≤ bi for i = 1,2, · · · ,n. Then, we apply the simplex
method (two-phase simplex method) to (4).

Evidently, all solutions of (3) that exist inX satisfy the
constraints in (4) if we putyi = gi(xi). Hence, if the fea-
sible region of the LP problem (4) is empty, then we can
conclude that there is no solution of (3) inX.

The emptiness or nonemptiness of the feasible region of
(4) can be checked by the simplex method. If the simplex
method terminates with the information that the feasible
region is empty, then there is no solution of (3) inX, and
we can excludeX from further consideration. This test is
called the LP test. The LP test is much more powerful than
the conventional test using interval extension because it
handles the constraints at the same time. It has been shown
that if we use appropriate directed roundings, then the LP
test gives correct results (in the sense that boxes containing
solutions are never discarded) [8].

By introducing the LP test to the interval algorithms
(such as the Krawczyk-Moore algorithm [11]), all solutions
of (3) can be found very efficiently. In [8], this algorithm
solves a system of nonlinear equations withn = 60 in prac-
tical computation time, although the original Krawczyk-
Moore algorithm can solve the system only forn ≤ 12.

In [9], it is shown that the LP test can be performed with
a few iterations (often no iteration) per box by using the
dual simplex method. Using this technique, the LP test be-
comes not only powerful but also efficient. In [9], this im-
proved LP test is introduced to the Krawczyk-Moore algo-
rithm, which succeeded in finding all solutions to systems
of nonlinear equations withn = 200.

4. Proposed Algorithm

The proposed algorithm is an extension of the algorithm
in [9], to which the idea of narrowing a box using LP is
introduced. Namely, ifX is not excluded, then we narrow
the box using LP, which makes the algorithm much more
efficient.
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Figure 2: LP narrowing.

We first explain how a boxX is narrowed in thex1-
direction. In the LP test toX, we apply the simplex method
to

min xi

subject to
Py+ Qx− r = 0

a ≤ x ≤ b

c ≤ y ≤ d

(5)

for i = 1 instead of (4). If the feasible region of (5) is
empty, then we excludeX from further consideration. If
the minimum valuex∗1 is greater thana1, then we prune the
lower partx1 ≤ x∗1 of X because there is no solution there
[see Fig. 2(a)]. Thus, the boxX is narrowed from the lower
side of thex1-direction.

Now we split the narrowed box in thex1-direction [see
Fig. 2(b)]. Let the lower sub-box be denoted byXL. Then,
the following procedure is repeated beginning with this
sub-box. We solve the LP problem (5) forXL (where
a ≤ x ≤ b and c ≤ y ≤ d represent the corresponding
intervals forXL). Note that this LP problem can be solved
efficiently with a few iterations by using the dual simplex
method. If the feasible region of (5) is empty, then we ex-
cludeXL from further consideration. If the minimum value
x∗1 is greater than the lower bound ofXL in thex1-direction,
then we prune the lower partx1 ≤ x∗1 of XL [see Fig. 2(c)],
split the narrowed box in thex1-direction, and let the lower
sub-box be denoted byXL again. This procedure is re-
peated until there is no feasible region of (5) and henceXL

is excluded. Thus, the boxX is narrowed repeatedly from
the lower side of thex1-direction.

Let the resulting narrowed box be denoted byX again
for the simplicity of notation. Then, we apply the simplex
method to

max xi

subject to
Py+ Qx− r = 0

a ≤ x ≤ b

c ≤ y ≤ d

(6)

for i = 1 on X. If the maximum valuex∗1 is less thanb1,
then we prune the upper partx1 ≥ x∗1 of X, split the nar-
rowed box in thex1-direction, and let the upper sub-box
be denoted byXU . Then, the similar procedure is repeated
until there is no feasible region of (6) and henceXU is ex-

Table 1: Comparison of computation time (s) in Example 1.

n Ref.[9] Proposed

50 1 808 7
100 5 914 47
150 8 777 151
200 34 702 361
250 17 8984 508
300 – 1 194
350 – 1 729
400 – 1 957
450 – 3 944
500 – 3 817
550 – 6 588
600 – 9 530
650 – 10 948
700 – 15 021

cluded. Thus, the boxX is narrowed repeatedly from the
upper side of thex1-direction.

This is the narrowing procedure in thex1-direction.
Let the resulting narrowed box be denoted byX again.
Then, we repeat the similar narrowing procedure in the
xi-directions (i = 2,3, · · · ,n), and narrow the box in all
coordinate directions. Such an algorithm is called the LP
narrowing.

Note that as the box becomes smaller, the feasible region
becomes smaller, which makes the LP test more powerful.
Also note that the LP problem (5) or (6) can be solved ef-
ficiently with a few iterations by the dual simplex method.
Thus, the LP narrowing is not only powerful but also effi-
cient and narrows a box as much as possible using the dual
simplex method.

5. Numerical Examples

We introduced the LP narrowing to the well-known
Krawczyk-Moore algorithm [11] and implemented the new
algorithms using the programming language C on a Sun
Ultra 45 workstation (CPU: UltraSPARC-IIIi 1.6GHz). In
this section, we show some numerical examples.

We used the free package GLPK (GNU Linear Program-
ming Kit)3 for solving the LP problem (4), (5), or (6). The
GLPK package is a set of routines written in ANSI C and
organized in the form of a callable library. This package
is intended for solving large-scale LP, mixed integer LP,
and other related problems. The main advantage of using
GLPK in the proposed algorithm is that GLPK can per-
form the dual simplex method starting from a previously
obtained dual feasible basis. Hence, GLPK is well-suited
to the proposed algorithm.

3http://www.gnu.org/software/glpk/
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Table 2: Comparison of computation time (s) in Example 2.

n Ref.[9] Proposed

50 117 16
100 1 514 105
150 9 654 426
200 39 883 1 158
250 84 715 2 353
300 – 4 901
350 – 7 036
400 – 11 230
450 – 15 292
500 – 25 125
550 – 30 374
600 – 37 635
650 – 47 567
700 – 63 193
750 – 75 419
800 – 99 392
850 – 110 802
900 – 132 449
950 – 170 198

1000 – 178 707

Example 1: We first consider a system ofn nonlinear
equations:

xi+1 − 2xi + xi−1 + h2 exp(xi) = 0, i = 1,2, · · · ,n

where x0 = xn+1 = 0 andh = 1/(n + 1). This system
comes from a nonlinear two-point boundary value prob-
lem termed the Bratu problem. The initial box isD =

([0,5], · · · , [0,5])T . The number of solutions is two for all
n.

Table 1 compares the computation time (s) of the algo-
rithm in [9] and the proposed algorithms, where “–” im-
plies that it could not be computed in practical computa-
tion time. As seen from the table, the proposed algorithm
is much more efficient than the algorithm in [9], which in-
dicates that the LP narrowing is very powerful.

Example 2: We next consider a system ofn nonlinear
equations:

xi − 1
2n


n∑

j=1

x3
j + i

 = 0, i = 1,2, · · · ,n.

The initial box isD = ([−10,10], · · · , [−10,10])T . The
number of solutions is three for alln. Table 2 compares the
computation time (s) of the algorithm in [9] and the pro-
posed algorithms. It is seen that a similar result is obtained
as that in Example 1.

6. Conclusion

In this paper, an efficient algorithm has been proposed
for finding all solutions of nonlinear equations using the
concept of LP narrowing. It has been shown that all solu-
tions can be found very efficiently by the proposed algo-
rithm.

As has been stated, the problem of finding all solutions
of nonlinear equations is a class of NCSPs. It seems that the
LP techniques are also effective for a more general class of
NCSPs. Hence, it should be left as a future subject to apply
the LP techniques to a more general class of NCSPs.
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