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Abstract—The idea of this talk is to explore the inter-
play between the theorems of nonlinear analysis of semilin-
ear elliptic partial differential equations and the numerical
schemes that are used to find their approximate solutions.
In particular, we study how theorems of symmetry and a
priori boundedness for the continuous case can shed light
on what can be proved for discrete approximation.

1. Introduction

A classic paper is that of Gidas, Ni and Nirenberg [?], in
which a typical result of the type we have in mind was: a
positive solution of the boundary value problem

Au= f(u)inQ, u=0o0n0oQ (1
must be radially symmetric if Q is a ball.

A related area has been attracting growing attention,
namely how does one approximate solutions of this type
of nonlinear boundary value problem? Typically, the work
in this area relies on a suitable discretization of (1), (most
commonly by finite-differences), and then uses theoretical
ideas from nonlinear analysis such as monotonicity meth-
ods, mountain pass algorithms, or linking methods, to de-
velop an approximate or exact solution to the discretized
problem.

Usually, the discretized problem is only approximately
solved. The conventional wisdom is that if refinement of
the grid results in only small changes to the approximate
solution, then one is in the vicinity of a true solution of (1).
In some cases, it is possible, using exact arithmetic, and
eigenvalue estimates, to give a computer-assisted proof that
there is a true solution of (1) in the vicinity of an approxi-
mate one. For a complete list of references to this problem,
see [2].

One subject of this talk is to begin to address the so-far-
neglected question: if the partial differential equation (1)
has inherited certain symmetry properties from the domain,
to what extent does the discretized problem also inherit
these symmetry properties? After all, the discretized prob-
lem is supposed to be a close approximation of the contin-
uous problem, at least for high-dimensional discretization.
If the symmetries are not reflected in the solution, impor-
tant properties of the solution are being missed.

An example from ordinary differential equations is illus-
trative. Here, the symmetry property of positive solutions
of

u’ = f(u), u>0in(-L,L), u(-L)y=u(L)=0. (2)
are elementary.

Note that a positive solution u of (2) must have a maxi-
mum at some point xy € (—L, L). Then observe that since
u(x) and u(2xy — x) both satisfy the same initial value prob-
lem at xp, they must be identical. From this we can con-
clude that xo = O and that the solution is monotone de-
creasing on (0,L). (This also follows from the paper of
Gidas, Ni, and Nirenberg.)

The first natural conjecture would be that the discrete
approximate solution # would have a maximum at i = 0,
and be symmetric about O in the sense that u_; = ;. This
would exactly reflect the symmetry properties of the analo-
gous continuous problem. Unfortunately, this conjecture is
easily shown to be false.

Roughly speaking, the correct result is that as h — 0,
the solution becomes more and more symmetric about the
point where the maximum is attained, and that point ap-
proaches the origin. Thus, the correct result is that for a
sufficiently small space step, the solution will be “approxi-
mately” symmetric about the origin.

This is one example of the type of general picture we
have in mind: corresponding to every major theorem in the
analytic or continuous setting, there should be an under-
standing of what the implications of this result are in the
discrete approximating setting.

Naturally, these results have analogues, (although a bit
more complicated to write down in a small number of
pages), in the partial differential equation setting.

Similarly, there is a vast literature on when weak solu-
tions of

Au= f(u), u>0inQ, u=0o0n0dQ 3)
are a priori bounded , with appropriate assumptions on f.
For a complete list of references to this problem, see [2]

In [1], we show that these results must take account of
sharp corners in the domain, resulting in a new class of
generalised Brezis-Turner critical exponents. What is now
under investigation is what the implications of this are for
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the finite difference approximations of the approximate so-
lutions. When can we be sure that there will be uniform a
priori bounds for finite difference approximations, at least
when 4 is sufficiently small.

It is known that if the critical growth rates are exceeded
in the nonlinearity, new singular solutions can exist. Pre-
sumably these will show up when one tries to find finite dif-
ference solutions of these equations. A natural question is
how to distinguish these solutions from the classical ones.
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