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Abstract—In this paper, we investigate the robustness
in the time series prediction method based on the local in-
stability of the orbit, which we proposed previously. In our
proposed method, we evaluate the Jacobian matrix by con-
sidering the structure of the local instability of the orbit.
Thus, the Jacobian matrix is calculated from a certain el-
lipsoidal neighboring region around a reference data point.
From computer experiments, comparing with the conven-
tional method where a spherical region is assumed as the
neighboring region, our method can predict future behav-
ior of the systems with higher precision independent from
the size of the neighboring region. It suggests us that our
method can give the robust prediction.

1. Introduction

The time series prediction is one of important problems
in chaotic time series analysis[1, 2, 3, 4]. Recently, we have
proposed a novel evaluation method of the Jacobian ma-
trix by considering the structure of the local instability of
the orbit[5]. In conventional method, the Jacobian matrix
is calculated from a certain spherical neighboring region
around the reference data point at each time step[2]. In the
evaluation process, the accuracy depends on the number of
data points. Thus, at the situation that we can observe be-
haviors of the system during a long time duration, we can
ensure the accuracy of the evaluation. In usual, however,
the number of data points which we can observe is limited,
then it is hard to archive the desired accuracy.

In addition, even though one sets the size of the neigh-
boring region being larger, the accuracy could not be better.
We consider the reason as follows. In the case that the data
points are dispersed uniformly, we could succeed to evalu-
ate the Jacobian matrix from a certain spherical neighbor-
ing region. In usual, chaotic data forms a certain attractor,
and reveals trajectory(orbit) instability toward certain di-
rections, that is, the data points are not dispersed uniformly.
Therefore, from data points in the neighboring region with
a certain larger size, it is difficult to get effective informa-
tions, instability or stability of the orbit.

In order to overcome the problem, we have proposed our
evaluation method of the Jacobian matrix by considering
the structure of the local instability of the orbit[5]. We have

succeeded to give better prediction accuracy for several ex-
amples though the case of the limited data number. The
size of the neighboring region is one of important factors
in evaluating Jacobian matrix, finally ensuring the accu-
racy in predicting future behavior. Therefore, our purpose
of the paper is to show that our evaluation method is robust
for the size of the neighboring region.

2. Jacobian Matrix Evaluation Based On Local Orbit
Instability

Let us present our method briefly[5]. Let us consider
a certain nth order nonlinear dynamical system, some-
times the system reconstructed by Takens’s embedding
theorem[6]. We denote a n-dimensional state vector in sys-
tem to be x(t).

In the local linear prediction method[4], a future point of
x(t) can be given,

x̂(t + 1) = DF (x (t)) (x(t) − x(s)) + x(s), (1)

where DF (x (t)) is a Jacobian matrix and x(s) is the nearest
neighbor point on the attractor. Thus, it is important to
ensure the accuracy in evaluating the Jacobian matrix in
order to realize a better prediction.

In our method in evaluating Jacobian matrix, we uti-
lize the information of local instability of trajectory adding
to the information of x(t). In the conventional evaluation
method of the Jacobian matrix, a spherical neighboring re-
gion is assumed as a near neighbor set of x(t). In our
method, we extend the radius for certain directions of the
spherical neighboring region. The direction is determined
by considering local instability of the orbit. The key point
of our method is how to evaluate local instability of the
orbit. In our method, we employ the concept of local Lya-
punov spectra [1, 3].

The local Lyapunov spectra are calculated by

λi(t) =
1
T

T∑
τ=1

log|e′(i)(t − τ)| (t ≥ t0), (2)

where T is the small number of time steps and t0 is a certain
duration time steps for excluding transient behavior. The
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n-dimensional vector e′(i)(t) is given by performing Gram-
Schmidt to e(i)(t), and e(i)(t) is given by

e(i)(t + 1) = DF(t)u(i)(t), (i = 1, 2, · · · , n), (3)

where the orthonormal base vector u(i)(t) is given by per-
forming Gram-Schmidt ortho-normalization to e(i)(t). It
should be noted that in the calculation of Eq.(3), the evalu-
ation of DF(t) is done with a spherical neighboring region.

Based on the concept of local Lyapunov spectra, if the
value of λi(t) is positive, u(i)(t) represents the unstable di-
rection of the trajectory at time t. On the other hand, if the
value of λi(t) is negative, u(i)(t) represents the stable direc-
tion. Therefore, we determine the direction to extend the
radius depending on whether λi(t) is positive or negative.

Now, let us summarize our method.

1. Evaluate the Jacobian matrix from a certain spher-
ical neighboring region based on the conventional
method[2].

2. Based on Eq.(2), calculate local Lyapunov spectra.

3. Change the spherical neighboring region into the el-
lipsoidal neighboring region. The radius of the spher-
ical neighboring region is extended to the direction of
u(i)(t) depending on the sign of λi(t).

4. Evaluate another Jacobian matrix from the ellipsoidal
neighboring region.

3. Computer Experiments

3.1. Purposes and Procedure

The purpose of the computer experiment is to investigate
the dependence of the prediction accuracy on the size of the
neighboring region. In addition, we investigate which di-
rection is better to extend the radius of the spherical neigh-
boring region, stable direction or unstable direction. There-
fore, we perform prediction with the change of the radius of
the neighboring region for two cases; evaluating the Jaco-
bian matrix with expanding the radius toward (i)the stable
direction and (ii) the unstable direction.

3.2. Conditions

In computer experiments, we employ two types of
chaotic attractors, Rössler attractor and Ikeda attractor. The
Rössler attractor is written by[7],

dx
dt = −y − z
dy
dt = x + ay
dz
dt = b + z(x − c)

(4)

where a = 0.15, b = 0.2 and c = 10. We generate
time series of 3-dimensional state vector, (x(0), y(0), z(0))T ,
(x(1), y(1), z(1))T , · · · , by calculating Eq.4 based on forth
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Figure 1: Rössler attractor
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Figure 2: Restructured Ikeda attractor

order Runge-Kutta method with the step size of 0.1. The
shape of the Rössler attractor is given in Figure 1.

On the other hand, The Ikeda attractor is presented by[8],x(t + 1) = q + b(x(t) cos θ((t)) − y(t) sin(θ(t)))
y(t + 1) = b(x(t) sin(θ(t)) + y(t) cos(θ(t))),

(5)

where,

θ(t) = κ − α

1 + x(t)2 + y(t)2 . (6)

We set the parameters to be q = 1, b = 0.9, κ = 0.4
and α = 6. In computer experiments, we reconstruct 3-
dimensional attractor from time series of x(0), x(1), · · ·
with the time delay of τ = 1 according to the Takens’s
embedding theorem[6]. The reconstructed Ikeda attractor
is given in Figure 2.

In the evaluation process of the Jacobian matrix, we set
the duration time of t0 to be 1000, and T to be 1. We per-
form prediction of N = 100 data points for the Rössler
attractor and the reconstructed Ikeda attractor. We predict
1 step future point for each data and evaluate a prediction
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Figure 3: Prediction accuracy for the 1 step future point in the Rössler attractor. (a) The result for extending to stable
direction. (b) The result for extending to unstable direction. The horizontal axis represents radius of minor axis and the
vertical axis prediction accuracy E. For an instance, the radius 0.1 means that the radius covers 10% of the whole attractor
region. The red line represents that the major axis is 1 times as long as the minor axis, that is, we employ the conventional
spherical neighboring region. The green line represents that the major axis is 1.5 times as long as the minor axis and the
blue line that the major axis is 3.0 times as minor axis.
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Figure 4: Prediction accuracy for 1 step future point in the reconstructed Ikeda attractor. (a) The result for extending to
stable direction. (b) The result for extending to unstable direction. In details, see Figure 3.

accuracy by,

E =
1
N

t0+N−1∑
t=t0

√√
3∑

i=1

(x̂i(t + 1) − xi(t + 1))2

2R
, (7)

where x̂i(t + 1) is a prediction value, xi(t + 1) is the true
value given by the attractor, N = 100 and R is the radius of
the major axis of the corresponding attractor. Smaller value
of E means that the prediction accuracy is higher.

3.3. Results

The result for the Rössler attractor is given in Figure 3.
For the small radius, the prediction accuracy extremely gets
worse in the conventional method with the spherical neigh-
boring region. On the other hand, the prediction accuracy
does not strongly depend on the radius in our method. Fur-
thermore, the smallest value of E is 1.6 × 10−4 in the case
that the radius of the minor axis is 0.04, the radius of the
major axis is 2.4 times as long as that of the minor axis and
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the expanding directions are stable ones.
The result for the reconstructed Ikeda attractor is given

in Figure 4. Similarly, for the small radius, the prediction
accuracy extremely gets worse in the conventional method.
On the other hand, the prediction accuracy does not depend
on the radius in our method with the major radius of 3 times
the minor axis.

From the results, our method can give a better predic-
tion accuracy among various radius of the neighboring re-
gion comparing with the conventional method. Thus, our
method is robust for the radius size in predicting future data
points.

4. Conclusions

In the paper, we present our evaluation method of the
Jacobian matrix by considering the structure of the local
instability of the orbit. We apply our method to time se-
ries prediction. We investigate prediction accuracy with the
change of the radius size of the neighboring region. Results
are as follows:

• Our method reveals good prediction accuracy among
various radius of the neighboring region comparing
with the conventional method. Thus, our method is ro-
bust for the radius size in predicting future data points.

• For the Rössler attractor, our method can give the
highest prediction accuracy in the case that the radius
of the minor axis is 0.04, the radius of the major axis
is 2.4 times as long as that of the minor axis and the
expanding directions are stable ones.

Therefore, our method is practical in time series prediction.
In the near future, we apply our method to real data.
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