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Abstract—Time-frequency analysis is performed for
chaotic flow with a power spectra estimator based on the
phase-space neighborhood. It is observed that the near-
est neighbors, representing the state recurrences in the
phase space reconstructed by time delay embedding, actu-
ally cover data segments with similar wave forms and thus
possess redundant information, but recur with no obvious
temporal regularity. To utilize this redundant recurrence
information, a neighborhood-based spectra estimator is de-
vised. Then time-frequency analysis with this estimator
is performed for the noisy Lorenz time series and colored
noise. Features revealed by the spectrogram can be used to
distinguish noisy chaotic flow from colored noise.

1. Introduction

In order to obtain the inherent properties of a chaotic sys-
tem from the measured time series, various methods have
been proposed, such as surrogate tests [1], Fourier trans-
forms [2, 3], and approaches based on time delay embed-
ding [9]. Among these methods, approaches based on time
delay embedding may be the most popular framework for
analyzing chaotic time series. Some measures such as Lya-
punov exponents and correlation dimension have been pro-
posed to characterize the global features of dynamical sys-
tems. However, few studies of the local time pattern of
chaotic time series have been reported; nevertheless, thisis
important for some purposes, such as to reveal the degree
of chaoticity of a sequence.

Spectra analysis provides an alternative framework for
chaotic time series analysis [2, 3, 4]. With the meth-
ods based on Fourier transform, the relation between the
spectra and the topology as the corresponding dynami-
cal system bifurcates to chaos has been studied [2]. And
the exponential-law fall-off pattern of some typical chaotic
data (e.g., the Lorenz time series) has been utilized to dis-
tinguish chaotic sequence from colored noise with power-
law spectra [4]. However, other researchers have argued
that a chaotic sequence cannot be well distinguished from
either colored noise [5] or quasi-periodic motion (with sin-
gular power spectra) by its finite-time power spectra [3].
This is especially true when the chaotic data are contam-
inated by observational noise. For a chaotic signal with
complicated evolution, the simple frequency domain repre-
sentation may obscure information related to timing. Spec-
tra analysis usually only adopts the spectral amplitude,
while neglecting the phase information. Consequently,

confusion will occur between any two signals with the
same spectral amplitudes. A time-frequency joint analysis
is therefore desirable to better unveil these features [11].
However, few studies of the time-frequency analysis for
chaotic sequence have been reported.

State recurrence is one important feature of chaotic sys-
tems. In the reconstructed phase space, the state recur-
rences of a reference phase point turn out to be its nearest
neighbors, which can provide redundant information but
recur with no temporal regularity as we will demonstrate
later. The conventional time-frequency analysis methods
(e.g., periodogram [10]), utilizes only one segment of con-
secutive data and neglects temporally isolated state re-
currences beside this data segment. So a time-frequency
analysis which can utilizes all state recurrences is desir-
able. The present paper focuses on: (i) demonstrating
that the nearest neighbors can provide redundant informa-
tion for chaotic signal analysis and processing, (ii) propos-
ing a spectra estimator which can utilize all the neighbors,
and (iii) performing a time-frequency analysis to (noisy)
chaotic flow with the proposed spectra estimator and ex-
tracting some features that can be used to distinguish the
(noisy) chaotic data from colored noise.

The organization of this paper is as follows. In Sec.
2, the relationship between the reference point and its
nearest neighbors is demonstrated, and the principle of
neighborhood-basedspectra estimation (NSE) is presented.
In Sec. 3, time-frequency analysis with NSE is performed
for the (noisy) Lorenz time series and colored noise. It is
shown that colored noise can be distinguished from (noisy)
chaotic flow based on their respective main ridge patterns.
Finally, a conclusion is given in Sec. 4.

2. Principle of the method

Let {zn}
L
n=1 denote a chaotic time series withL sam-

ples. The phase points can be reconstructed by time delay
embedding, i.e.,{zn}

L−(d−1)τ
n=1 , zn = [zn, zn+τ, · · · , zn+(d−1)τ]T,

whered is embedding dimension,τ is time delay, and (·)T

denotes the transpose of a real matrix. The near neighbor-
hood of the reference pointzn is defined asNn , {zk :
‖zk − zn‖ < ε, 1 ≤ k ≤ L − (d − 1)τ}, and arranged as
Nn = {zk1, zk2, · · · , zkN }, k1 < k2 < · · · < kN , whereN = |Nn|

is the number of neighbors, andε is neighborhood radius
(note thatzn ∈ Nn). Furthermore, the recurrence time ofzn

is simply defined asTn(i) = ki+1− ki, i = 1, · · · ,N − 1 [12].
Considering a chaotic time series generated from the
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Lorenz system [15], ˙x = σ(y−x), ẏ = (r−z)x−y, ż = xy−bz,
where (σ, r, b) = (10, 28, 8/3). Note that all the Lorenz
time series used in this paper are 10 000 points sampled
from the x component with time interval 0.04 and these
fixed parameters, unless stated otherwise.

Figure 1 demonstrates the relationship between
the reference pointz2963 (randomly selected) and
its first ten nearest neighbors with subscriptk =

192, 2659, 3485, 4387,4388,5376, 5415,6763, 6764, 7235.
The reference pointzn covers a segment of time series
[zn, zn+1, zn+2, · · · , zn+(d−1)τ]T with the length of embedding
window Lw = (d − 1)τ + 1. For clarity, letsn denote this
associated segment of the time series. Ifτ = 1, sn is the
same aszn. It can be observed that the corresponding wave
forms of the neighbors are similar to each other, but the
recurrence time seems irregular. From the viewpoint of
signal processing, these similar wave-form segments con-
tain much redundant information relative to the reference
one. There are some neighbors that are adjacent in time,
for examplek = 4387 and 4388. The adjacent neighbors
that lie on the same recurrence trajectory provide only
one new sample, primarily they serve to increase the
weight of the corresponding state recurrence within the
neighborhood.

Conventional linear techniques (e.g., classical Fourier
transform) neglect some scattered state recurrences and just
utilize one segment of consecutive data. Consequently,
these techniques usually obtain poor results in analyz-
ing chaotic data, while some methods (e.g., local projec-
tion noise reduction [6, 7] and nonlinear prediction [13]),
specifically designed for chaotic data, utilize the neigh-
bors and thus achieve better results. Analogously, aiming
to use the state recurrence of a chaotic system, we pro-
pose a Neighborhood based Spectra Estimator (NSE) to
estimate the corresponding power spectra of the reference
phase point [8].

For the neighborhoodNn, we define aLw × N neigh-
borhood matrix asDn = [xk1 xk2 · · · xkN ], with no-
tation xki = ski − s̄n, where s̄n = 〈ski〉 is the center.
First, an eigenvalue decomposition to the covariance ma-
trix, i.e., Cn =

1
N DnDT

n , of the neighborhoodNn is per-
formed,Cnui − λiui = 0, whereλi is the i-th eigenvalue,
andui = [ui(1), ui(2), · · · , ui(Lw)]T is its associated eigen-
vector. Then with the discrete-time Fourier transform of
eigenvectorui,

Vi(ω) =
Lw
∑

p=1

ui(p)e− jwp, (1)

NSE can be expressed as

PNS E (ω) =
1

Lw

Lw
∑

i=1

λi|Vi(ω)|2. (2)

NSE is derived from the B-T spectra estimator [10]. The
difference is that the B-T estimator utilizes the covariance
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Figure 1: The Lorenz time series and the first ten nearest
neighbors of reference pointz2963. • — the samplez2963;
◦ — the sampleszk corresponding to the first 10 nearest
neighbors. The bottom panels are enlargements of short
segments. Each segment marked with small dots corre-
sponds to one neighbor in phase space.

matrix generated from only one segment of consecutive
data, while NSE uses the covariance matrix estimated from
the data segments covered by the temporally scattered near-
est neighbors. Thus, NSE can capture the long time state
recurrence of chaotic data. If the neighborhood contains
only the reference point, NSE reduces to the B-T estima-
tor.

Furthermore, for each reference point, we define the
main frequency ωm as

P(ωm) = maxP(ωl), ωm ∈ {ωl}, (3)

whereωl is the frequencies with local maximum power am-
plitude, i.e.

dP(ω)
dω

∣

∣

∣

∣

ω=ωl

= 0,
d2P(ω)

dω2

∣

∣

∣

∣

ω=ωl

< 0. (4)

Then themain frequency will form a main ridge as the ref-
erence point moves along the phase trajectory. We observe
in the following sections that this main ridge shows differ-
ent characteristic patterns for different types of data.

3. Time-frequency analysis to chaotic time series

The Lorenz system is a typical chaotic system with two
scrolls. Figure 2 shows the power specta of the Lorenz sys-
tem estimated by periodogram. The power spectra of thex
andy components are broadband and similar to each other,
while the power spectra of thez component have a peak.
This spectra peak, which is indicated by↓ F1 in Fig. 2(c)
and named thehidden frequency in references [14], can re-
veal the frequency related to the principal oscillation of the
Lorenz system. This frequency is not a particular case of
this sequence. The spectra peak universally exists with
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small deviation (1.305∼1.330 Hz with 95% confidence).
Though this oscillation exists in thex andy components
simultaneously as the dynamics evolves, the periodogram
spectra ofx andy fail to reveal it.
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Figure 2: Power spectra of the Lorenz system estimated by
periodogram. The y-axis labelP denotes the power spectra
of each sequence. (a), (b), and (c) are the power spectra of
the time series measured from thex, y, andz components,
respectively; (d) the strange attractor of the Lorenz system.

In contrast, time-frequency analysis of the same Lorenz
time series used in Fig. 2(a) with NSE can reveal the prin-
cipal oscillation. We over-embed the time series withτ = 4
andd = 20, and use the first 20 nearest neighbors in NSE
analysis. A 1000-sample segment of the spectrogram for
each case is illustrated in Fig. 3. We can observe that the
main ridge is formed by many short disjointed curves (even
for the Lorenz time series contaminated with 5 dB white
noise), which vary slowly around a frequency related to
the principal oscillation. The frequency indicated by↑ F2,
is approximately equal to the hidden frequency indicated
by ↓ F1 in Fig 2(c). This implies that the main frequen-
cies contain the information of the principal oscillation of
chaotic system. Similar results can also be obtained with
data measured from they component of the Lorenz system.

Similar wave forms covered by the neighbors can en-
hance their common structure, i.e., the principal oscillation,
while may simultaneously “average” out the substructures
and noise. Thus, even for the noisy Lorenz time series with
5 dB white noise, the principal oscillation can be extracted.
The results show that time-frequency analysis with NSE
can extract the hidden frequency appropriately (estimated
from main frequencies like the spectra peak↑ F2 in Fig. 3).

It is difficult to distinguish (noisy) chaotic data from col-
ored noise by their spectra falloff pattern [5, 3]. Chaotic
flow has scattered state recurrences, while colored noise
does not possess this deterministic feature. Here, we will
demonstrate that time-frequency analysis with NSE can re-
veal this difference, and thus can be an alternative method
to distinguish them.
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Figure 3: Spectrogram of the Lorenz time series,r = 28.
(a) the clean Lorenz time series; (b) the noisy Lorenz time
series with 5 dB additive white noise. For each sub-figure,
the left panel is the time series, the top-right panel is the
corresponding spectrogram estimated by NSE, and the bot-
tom panel is the average of the spectrogram over time. The
black points are the main frequencies. In this paper, Eq. 1
is implemented by 512-point fast Fourier transform (FFT)
and (512−Lw) zeros are padded to the end ofui as the com-
mon strategy adopted. This pattern is followed in all fol-
lowing spectrogram figures, unless otherwise stated.

We take a pink noise and a surrogate sequence as ex-
amples. The pink noise (10 000 points) is generated by
a special case of 1-order autoregressive process (AR(1)),
Xn+1 = βXn + (1− β)εn, whereβ = 0.69 andεn ∼ N(0, 1)
is a Gaussian process. The spectra of the clean Lorenz
data have a long exponential-law scaling region. As the
Lorenz data are contaminated by observational noise, the
exponential-law region becomes less obvious and difficult
to be distinguished from that of pink noise. While the time-
frequency analysis with NSE is sensitive to this difference.
As Fig. 4(a) indicates, the main frequency of pink noise
varies along time with no regularity, while the main ridge
pattern of the noisy chaotic data with 5 dB white noise (Fig.
3(b)) exhibits more long-term temporal structure. The sur-
rogate data are generated by shuffling the phase of the orig-
inal noisy Lorenz data used in Fig. 3(b) [1]. The power
spectra of the surrogate data are similar to that of the origi-
nal data. However, due to the phase shuffling, the surrogate
data do not possess the deterministic features of the origi-
nal noisy Lorenz data, and thus their main ridge pattern is
clearly distinct (Fig. 4(b) vs. Fig. 3(b)). As we discussed
in Sec. 1, time-frequency joint analysis can reveal some
information that is obscured by just a single finite time fre-
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quency representation.
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Figure 4: (a) Spectrogram of pink noise; (b) spectrogram of
the surrogate data. The frequency bins calculated by FFT
are not scaled to the real frequency with units of Hz.

In summary, for the clean chaotic Lorenz time series, the
main ridge has many short unconnected curves, which vary
around the hidden frequency. For the noisy chaotic flow,
the principal oscillation can be extracted with the nearest
neighbors, and thus the main ridge reserves some charac-
teristics of the corresponding clean data, while for the pink
noise and surrogate data, there is no deterministic feature,
and thus the main ridge is irregular, which is distinct from
that of (noisy) chaotic flow. The difference in main ridge
pattern can be used to distinguish them.

4. Conclusion

First, we over-embedded the chaotic data, and demon-
strated that the nearest neighbors represent the state re-
currences of the reference point, but recur with no obvi-
ous temporal regularity. To apply these state recurrences,
a neighborhood based spectra estimator (NSE) was de-
vised for chaotic flow, bridging time delay embedding and
the frequency domain. Then time-frequency analysis with
NSE was performed for (noisy) Lorenz time series. We
found that NSE can reveal the frequency related to the prin-
cipal oscillation of the dynamical system, which is hidden
in the spectra estimated by the periodogram method. Fur-
ther we applied NSE to pink noise and phase shuffled sur-
rogate data. The results show that their main ridge patterns
are distinct from that of (noisy) chaotic flow, thus provid-
ing an alternative method to distinguish colored noise from
(noisy) chaotic flow, though for some real or more chaotic
systems, a distinction may not be that easy.
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