2007 International Symposium on Nonlinear Theory and its Applications O ?
NOLTA'07, Vancouver, Canada, September 16-19, 2007 5 %*
==

I\Jl O

A Time-Frequency method for Chaotic Flow

Junfeng Sun and Michael Small

Department of Electronic and Information Engineering, i#&wng Polytechnic University, Hong Kong, China.
Email: sun.junfeng@polyu.edu.hk, ensmall@polyu.edu.hk

Abstract—Time-frequency analysis is performed forconfusion will occur between any two signals with the
chaotic flow with a power spectra estimator based on treame spectral amplitudes. A time-frequency joint analysis
phase-space neighborhood. It is observed that the ne&rtherefore desirable to better unveil these features [11]
est neighbors, representing the state recurrences in tHewever, few studies of the time-frequency analysis for
phase space reconstructed by time delay embedding, actlraotic sequence have been reported.
ally cover data segments with similar wave forms and thus State recurrence is one important feature of chaotic sys-
possess redundant information, but recur with no obviousms. In the reconstructed phase space, the state recur-
temporal regularity. To utilize this redundant recurrenceences of a reference phase point turn out to be its nearest
information, a neighborhood-based spectra estimator-is deeighbors, which can provide redundant information but
vised. Then time-frequency analysis with this estimatarecur with no temporal regularity as we will demonstrate
is performed for the noisy Lorenz time series and colorefhter. The conventional time-frequency analysis methods
noise. Features revealed by the spectrogram can be usedea., periodogram [10]), utilizes only one segment of con-
distinguish noisy chaotic flow from colored noise. secutive data and neglects temporally isolated state re-
currences beside this data segment. So a time-frequency
analysis which can utilizes all state recurrences is desir-
able. The present paper focuses on: (i) demonstrating

In order to obtain the inherent properties of a chaotic sy¢hat the nearest neighbors can provide redundant informa-
tem from the measured time series, various methods hatien for chaotic signal analysis and processing, (ii) ppo
been proposed, such as surrogate tests [1], Fourier traidg a spectra estimator which can utilize all the neighbors,
forms [2, 3], and approaches based on time delay embeghd (iii) performing a time-frequency analysis to (noisy)
ding [9]. Among these methods, approaches based on tirakaotic flow with the proposed spectra estimator and ex-
delay embedding may be the most popular framework fdracting some features that can be used to distinguish the
analyzing chaotic time series. Some measures such as Lyaeisy) chaotic data from colored noise.
punov exponents and correlation dimension have been pro-The organization of this paper is as follows. In Sec.
posed to characterize the global features of dynamical sy&: the relationship between the reference point and its
tems. However, few studies of the local time pattern ofiearest neighbors is demonstrated, and the principle of
chaotic time series have been reported; neverthelesss thisieighborhood-based spectra estimation (NSE) is presented
important for some purposes, such as to reveal the degri@eSec. 3, time-frequency analysis with NSE is performed
of chaoticity of a sequence. for the (noisy) Lorenz time series and colored noise. It is

Spectra analysis provides an alternative framework faghown that colored noise can be distinguished from (noisy)
chaotic time series analysis [2, 3, 4]. With the methehaotic flow based on their respective main ridge patterns.
ods based on Fourier transform, the relation between ttkénally, a conclusion is given in Sec. 4.
spectra and the topology as the corresponding dynami-
cal system bifurcates to chaos has been studied [2]. And pringiple of the method
the exponential-law fall46 pattern of some typical chaotic
data (e.g., the Lorenz time series) has been utilized to dis-Let {zn}h:l denote a chaotic time series with sam-
tinguish chaotic sequence from colored noise with poweples. The phase points can be reconstructed by time delay
law spectra [4]. However, other researchers have arguethbedding, |e{zn}L @17 7, = (20, Zntes 5 Zne(d-1)e) T
that a chaotic sequence cannot be well distinguished frowhered is embeddlng dlmension,is time delay, and-{"
either colored noise [5] or quasi-periodic motion (with-sin denotes the transpose of a real matrix. The near neighbor-
gular power spectra) by its finite-time power spectra [3]hood of the reference poirg, is defined adN, = {z :

This is especially true when the chaotic data are contarfizx — z,|| < ¢,1 < k < L — (d — 1)}, and arranged as
inated by observational noise. For a chaotic signal witN, = {z,, Z,, - - -, Zi}, K1 < k2 < --- < kn, whereN = |Np|
complicated evolution, the simple frequency domain représ the number of neighbors, ards neighborhood radius
sentation may obscure information related to timing. Spe¢note thatz, € N;). Furthermore, the recurrence timezyf

tra analysis usually only adopts the spectral amplitudés simply defined a3,(i) = k.1 —ki, i=1,---,N-1[12].
while neglecting the phase information. Consequently, Considering a chaotic time series generated from the

1. Introduction
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Lorenz system [15 = o(y—X), Y = (r—2)x-Y, Z = xy-bz, 20
where ¢, r,b) = (10,28,8/3). Note that all the Lorenz 10
time series used in this paper are 10 000 points samplec_ |} A ‘
from the x component with time interval.04 and these " "
fixed parameters, unless stated otherwise. -10

Figure 1 demonstrates the relationship between _x

the reference pointzoges (randomly selected) and 0 1000 8000 wﬂ eooyioooWooo
its first ten nearest neighbors with subscript =

192 2659 348543874388 5376 5415 67636764 7235.
The reference poing, covers a segment of time series
[Zn, Zn+15 Zns2,  * +» Zna(a-1)-] T With the length of embedding
window L, = (d — 1)r + 1. For clarity, lets, denote this
associated segment of the time seriest ¥ 1, s, is the
same agy. It can be observed that the corresponding wave 2800 3000 3200 3400 3600 6800 7000 7200

forms of the neighbors are similar to each other, but the

recurrence time seems irregular. From the viewpoint dfigure 1: The Lorenz time series and the first ten nearest
signal processing, these similar wave-form segments cof€¢ighbors of reference poiaggss o — the samplezaoss;

tain much redundant information relative to the reference — the samples corresponding to the first 10 nearest
one. There are some neighbors that are adjacent in tinfigighbors. The bottom panels are enlargements of short
for examplek = 4387 and 4388. The adjacent neighbor§egments. Each segment marked with small dots corre-
that lie on the same recurrence trajectory provide onl§iPonds to one neighborin phase space.

one new sample, primarily they serve to increase the

weight of the corresponding state recurrence within thﬁ‘]atrix generated from only one segment of consecutive

neg;hborh(_)od.l i hni lassical F . data, while NSE uses the covariance matrix estimated from
onventional linear techniques (e.g., classica OUNShe data segments covered by the temporally scattered near-

transform) neglect some scattered state recurrencessind [TV neighbors. Thus, NSE can capture the long time state
utilize one segment of consecutive data. Consequent%currence of chaotic data. If the neighborhood contains

these techniques usually obtain poor results in analy%)'nly the reference point, NSE reduces to the B-T estima-
ing chaotic data, while some methods (e.g., local proje%r '

tion noise reduction [6, 7] and nonlinear prediction [13]), l.:urthermore for each reference point, we define the
specifically designed for chaotic data, utilize the neighr'nainfrequencycl)m as '
bors and thus achieve better results. Analogously, aiming
to use the state recurrence of a chaotic system, we pro- P(wm) = maxP(w), wm € {wi}, (3)
pose a Neighborhood based Spectra Estimator (NSE) to

estimate the corresponding power spectra of the referenserew is the frequencies with local maximum power am-

phase point [8]. plitude, i.e.

For the neighborhoodll,, we define aL,, x N neigh- 5
borhood matrix adn = [Xg, Xk, -+ Xkl With no- dP(w) -0 d°P(w) <0 (4)
tation x, = S — s, wheres, = (s¢) is the center. do lozo 7 dw? lo=a

First, an eigenvalue decomposition to the covariance Mgnen themain frequency will form a main ridge as the ref-

. . _ l T . . X .
trix, i.e., Cn = {DnDy, of the neighborhoodn is per-  grence point moves along the phase trajectory. We observe
formed, Cnui — 4iui = O, whereJ; is thei-th eigenvalue, iy the following sections that this main ridge showSeii

andu; = [i(1), ui(2),---, u(Lw)]" is its associated eigen- gn characteristic patterns forfiéirent types of data.
vector. Then with the discrete-time Fourier transform of

eigenvectou;, . . o )
g ' 3. Time-frequency analysisto chaotictime series

Lw

Vi(w) = Z ui(p)e e, (1) The Lorenz system is a typical chaotic system with two
=1 scrolls. Figure 2 shows the power specta of the Lorenz sys-
tem estimated by periodogram. The power spectra okthe
NSE can be expressed as andy components are broadband and similar to each other,
L while the power spectra of thecomponent have a peak.
' VR This spectra peak, which is indicated byF; in Fig. 2(c)
Prse(w) = Lw ; AN (@) (2) " and named thaidden frequency in references [14], can re-

veal the frequency related to the principal oscillationtf t
NSE is derived from the B-T spectra estimator [10]. The&.orenz system. This frequency is not a particular case of
difference is that the B-T estimator utilizes the covarianddis sequence. The spectra peak universally exists with
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small deviation (1.3051.330 Hz with 95% confidence).

Though this oscillation exists in the andy components
simultaneously as the dynamics evolves, the periodogra
spectra ofk andy fail to reveal it.
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Figure 2: Power spectra of the Lorenz system estimated by _ _
periodogram. The y-axis labBldenotes the power spectraFigure 3: Spectrogram of the Lorenz time series; 28.
of each sequence. (a), (b), and (c) are the power spectra(@) the clean Lorenz time series; (b) the noisy Lorenz time
the time series measured from mW, andz ComponentS, series with 5 dB additive white noise. For each SUb'ﬁgUre,

respectively; (d) the strange attractor of the Lorenz syste the left panel is the time series, the top-right panel is the
corresponding spectrogram estimated by NSE, and the bot-

m panel is the average of the spectrogram over time. The
;back points are the main frequencies. In this paper, Eq. 1

cipal oscillation. We over-embed the time series with 4 Is implemented by 512-point fast Fourier transform (FFT)

andd = 20, and use the first 20 nearest neighbors in NSEnd (512Ly) zeros are pad_ded to the_end.xpfas the_ com-
analysis. A 1000-sample segment of the spectrogram f on strategy adopte_d. This pattern is follpwed in all fol-
each case is illustrated in Fig. 3. We can observe that t 2Ving spectrogram figures, unless otherwise stated.
main ridge is formed by many short disjointed curves (even
for the Lorenz time series contaminated with 5 dB white
noise), which vary slowly around a frequency related to \We take a pink noise and a surrogate sequence as ex-
the principal oscillation. The frequency indicatedb¥2,  amples. The pink noise (10 000 points) is generated by
is approximately equal to the hidden frequency indicateg special case of 1-order autoregressive process (AR(1)),
by | F1in Fig 2(c). This implies that the main frequen-x ., = BXn + (1 - B)e&n, whereg = 0.69 ande, ~ N(0, 1)
cies contain the information of the principal oscillatioh o is a Gaussian process. The Spectra of the clean Lorenz
chaotic system. Similar results can also be obtained witllata have a long exponential-law scaling region. As the
data measured from tiyecomponent of the Lorenz system. | orenz data are contaminated by observational noise, the
Similar wave forms covered by the neighbors can erexponential-law region becomes less obvious affiicdit
hance their common structure, i.e., the principal os@ifat  to be distinguished from that of pink noise. While the time-
while may simultaneously “average” out the substructurefsequency analysis with NSE is sensitive to thifefience.
and noise. Thus, even for the noisy Lorenz time series witlis Fig. 4(a) indicates, the main frequency of pink noise
5 dB white noise, the principal oscillation can be extractediaries along time with no regularity, while the main ridge
The results show that time-frequency analysis with NSkattern of the noisy chaotic data with 5 dB white noise (Fig.
can extract the hidden frequency appropriately (estimategib)) exhibits more long-term temporal structure. The sur-
from main frequencies like the spectra péak, in Fig. 3).  rogate data are generated by §ting the phase of the orig-
inal noisy Lorenz data used in Fig. 3(b) [1]. The power
Itis difficult to distinguish (noisy) chaotic data from col- spectra of the surrogate data are similar to that of the-origi
ored noise by their spectra faffopattern [5, 3]. Chaotic nal data. However, due to the phaseffling, the surrogate
flow has scattered state recurrences, while colored noidata do not possess the deterministic features of the origi-
does not possess this deterministic feature. Here, we wilhl noisy Lorenz data, and thus their main ridge pattern is
demonstrate that time-frequency analysis with NSE can relearly distinct (Fig. 4(b) vs. Fig. 3(b)). As we discussed
veal this diference, and thus can be an alternative methad Sec. 1, time-frequency joint analysis can reveal some
to distinguish them. information that is obscured by just a single finite time fre-

In contrast, time-frequency analysis of the same Lore
time series used in Fig. 2(a) with NSE can reveal the pri
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