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Abstract—Using chaotic signals, we evaluate the
performance of the equivariant adaptive separation via
independence (EASI) algorithm. We found that the
EASI algorithm in fixed-point (16-bit) arithmetic can
recover the chaotic signals successfully as well as the
algorithm in floating-point arithmetic. This suggests
that the EASI algorithm is suitable for hardware im-
plementation.

1. Introduction

Independent component analysis (ICA) for blind
source separation (BSS) has recently attracted much
attention in various fields, such as biomedical signal
processing (EEG/MEG signals), audio, acoustics, and
image enhancement systems, and wireless telecommu-
nication systems [1]. The ICA algorithms can decom-
pose observed signals into statistically independent
components. Therefore, we can recover the original
source signals s(t) from the observed signals x(t) =
As(t) if the original source signals are mutually inde-
pendent (A is an unknown mixing matrix).

In this paper, we use chaotic signals generated by
Chebyshev map as the original source signals because
these signals are mutually independent. Recently, we
originally found that the chaotic signals recovered by
ICA are very useful as spreading sequences in code
division multiple access (CDMA) [2]. The signal-
to-interference ratio (SIR) of the recovered signals is
much larger than those of the original signals although
the waveforms of the recovered signals are almost the
same as those of the original signals [3].

Using chaotic source signals, we evaluate the per-
formance of the equivariant adaptive separation via
independence (EASI) algorithm proposed by Cardoso
et al. [4]. The EASI algorithm have simple parallel
structure, and may be suitable for hardware imple-
mentation. Toward a hardware implementation, we
also investigate the performance of the algorithm in
16-bit fixed-point arithmetic.

2. EASI algorithm

In ICA algorithms, the basic goal is to find the sep-
arating matrix W, such that y(t) = W x(t), without
knowing the mixing matrix A. Here, x(t) = As(t)
are observed signals or mixed signals, and y(t) is a
scaled and permuted version of the original source sig-
nals s(t). That is, the equation WA = ΛP holds,
where Λ is an diagonal matrix and P is a permutation
matrix.

Many on-line ICA algorithms have been proposed so
far. We focus on the EASI algorithm, which includes
the natural gradient [5, 6], because the other effective
algorithms are mostly based on this algorithm [7, 8, 9].

Caldoso et al. proposed the following EASI algo-
rithm [4],

W(t + 1) = W(t) − µV(t)W(t), (1)
V(t) = y(t) · y(t)T − I

+ g(y(t)) · y(t)T − y(t) · g(y(t))T . (2)

We use g(y) = −tanh(y) and µ = 0.001953125 (=
2−9).

As the original source signals, we use the chaotic
signals generated by Chebyshev map. Each signal is
defined as follows:

s(t + 1) = Tq(s(t)), q ≥ 2. (3)

Here, Tq(x) is the q-th order Chebyshev polynomial
defined by Tq(cos θ) = cos(qθ). It is known that this
Chebyshev map is ergodic and it has the ergodic in-
variant measure

ρ(x)dx =
dx

π
√

1 − x2
, (4)

and it satisfies the orthogonal relation

∫ 1

−1

Ti(x)Tj(x)ρ(x)dx = δi,j
1 + δi,0

2
, (5)

where δi,j is the Kronecker delta function.
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Figure 1: The typical behavior of < CTE(t) >sample

in N = 2 case. CTE(t)s are sample-averaged (50 sam-
ples which have different mixing matrix A).

3. Performance evaluation

In this paper, we adopt following two indexes in or-
der to evaluate the performance of the EASI algorithm.
First index is cross-talking error (CTE) defined as,

CTE(t) =
n∑

i=1

(
n∑

j=1

|Cij(t)|
maxk |Cik(t)|

− 1)

+
n∑

j=1

(
n∑

i=1

|Cij(t)|
maxk |Ckj(t)|

− 1). (6)

Here, C(t) = W(t)A. Second index is average dis-
tance (AD) defined as,

AD+ = < |y(t) − s(t)| >time

AD− = < |y(t) + s(t)| >time (7)
AD = min(AD+, AD−).

Here, <>time denotes time average in steady-state.
y(t) is a recovered signal of s(t).

As the original source signals, we prepare N chaotic
signals, where j-th source signal is generated by the
(j + 1)-th order Chebyshev polynomial and a ran-
dom initial condition. In case of N = 2, we have
two original source signals which have the mapping
forms s1(t + 1) =T2(s1(t)) =2s1(t)2 − 1 and s2(t +
1) =T3(s2(t)) =4s2(t)3 − 3s2(t), respectively. Here,
each source signal sj(t) is normalized such that <
sj(t) >time= 0 and < s2

j >time= 1.
Figure 1 shows typical behavior of <

CTE(t) >sample in N = 2 case. After the tran-
sition period, CTE(t) becomes stable at low level.
Here, we call this state “steady-state”. The time-
averaged CTEs in steady-state are shown in figure
2. The dependency on N (number of independent
components) is 0.019 N(N − 1) as a result of fitting
analysis.

If the ICA algorithm successfully recover the origi-
nal source signals that are mutually independent, the
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Figure 2: The time-averaged CTEs at each number of
independent components N .

CTE should be zero in general. However, this is not
true in our case because the following two reasons: 1)
in on-line algorithm, each element Cij (Wij) does not
have constant value because there are always brand-
new inputs. They always librate around the each con-
vergent level. 2) strictly speaking, the original source
signals we are using are not mutually independent be-
cause we use finite time sequences. Inner product of
the original signals (

∑T
j=1 s1(tj) · s2(tj)) has very

small non-zero value, while inner product of the re-
covered signals (

∑T
j=1 y1(tj) · y2(tj)) has zero (to be

zero). There are some differences between the original
signals s(t) and the recovered signals y(t). In this case,

|Cij |
maxk |Cik| ( |Cij |

maxk |Ckj | ) have small non-zero values other
than maximum elements that have 1. Therefore, the
averaged CTEs of EASI have 0.019 N(N − 1), since
the number of terms of e.q.(6) is N(N − 1).

From the above fact, the EASI algorithm can re-
cover the original source signals successfully although
CTEs are not zeros. Figure 3 shows the original source
signals and the recovered signals in N = 2 case. Fig.
3-(a) shows the original source signal IC-1, which gen-
erated by second-order Chebyshev map, and the re-
covered signal EASI-1. Fig. 3-(b) also shows the orig-
inal source signal IC-2, which generated by third order
Chebyshev map, and the recovered signal EASI-2. The
return plots of the original source signals (IC-1, IC-2)
and the recovered signals (EASI-1, EASI-2) are shown
in figure 4. Each horizontal axis denotes y(t), and ver-
tical axis denotes y(t + 1) in fig. 4. The mapping
forms (T2 and T3) are also conserved. These figures
show that the EASI algorithm can recover the orig-
inal source signals successfully in N = 2 case. The
fact that EASI-1 has opposite sign to the IC-1 means
nothing to the success of recovery.

Even though the CTEs have large number in N =
100 case, the EASI algorithm can recover the orig-
inal source signals successfully. Figure 5 shows the
results of ICA simulation in N = 100 case. Fig. 5-(a)
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Figure 3: The original source signals and the recovered
signals in N = 2 case. (a) the original source signal
IC-1, which generated by Chebyshev map (second or-
der), and the recovered signal EASI-1. (b) the original
source signal IC-2, which generated by Chebyshev map
(third order), and the recovered signal EASI-2.
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Figure 4: The return plots of the original source signals
(a) IC-1, (b) IC-2, and the recovered signals (c) EASI-
1, (d) EASI-2, respectively in N = 2 case.

shows the correspondence between recovered signals
and original signals. For example, first point (1, 67)
denotes that the recovered signal EASI-67 is very sim-
ilar to IC-1. The average distance (AD) of the pair (1,
67) is 0.1714694 as shown in fig. 5-(b). This AD value
is minimum in this simulation. The maximum AD is
0.2141588 at number-40 (IC-40 and EASI-2) as shown
in fig. 5-(b).

Figure 6 shows signals of these pairs. Fig. 6-(a)
shows signals of minimum AD pair (IC-1 and EASI-
67), and fig. 6-(b) shows signals of maximum AD pair
(IC-40 and EASI-2). We can confirm that the EASI al-
gorithm recover the original source signals successfully
even in N = 100 case. These ADs are proportional to
0.019

√
N − 1 as shown in figure 7.
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Figure 5: The results of EASI in N = 100 case. (a)
Correspondence between ICs and EASIs. (b) The av-
erage distances (ADs) between ICs and EASIs.
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Figure 6: The original source signals and the recovered
signals in N = 100 case. (a) the original source signal
IC-1 and the recovered signal EASI-67 (minimum AD
pair). (b) the original source signal IC-40 and the
recovered signal EASI-2 (maximum AD pair).

4. Results in fixed-point arithmetic

Toward the hardware implementation of the EASI
algorithm, we have to check the performance of the
algorithm in fixed-point arithmetic. We used 16-bit
fixed-point arithmetic (two’s complement arithmetic),
and prepared the emulation program written by C. We
also used the following approximation function instead
of tanh(y), g(y) = −1 (y < −1), g(y) = y (−1 ≤ y ≤
1), and g(y) = 1 (1 < y).

We can confirm that the EASI algorithm recover the
original source signals successfully even in fixed-point
arithmetic from the comparison between left and right
figures in figure 8. The mapping forms (T2 and T3) of
the recovered signals are conserved in both cases. The
ADs in fixed-point arithmetic are almost the same as
those in floating-point arithmetic.
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Figure 7: The average distances (ADs) between ICs
and EASIs. Each filled circle denotes the average of
ADs, and each error-bar denotes the standard devia-
tion of ADs at each number of independent compo-
nents N .
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Figure 8: The return plots of the recovered signals
in floating-point arithmetic ((a) EASI-1, (b) EASI-2),
and in fixed-point arithmetic ((c) EASI-fixed-1, (d)
EASI-fixed-2), respectively in N = 2 case.

5. Conclusion and discussions

In this paper, we found that the EASI algorithm in
fixed-point (16-bit) arithmetic can recover the chaotic
signals successfully as well as the algorithm in floating-
point arithmetic. This suggests that the EASI algo-
rithm is suitable for hardware implementation.

The chaotic signals recovered by the EASI algorithm
are almost the same as the original chaotic signals.
This means that properties such as ergodicity and cor-
relation property are conserved. However, its orthog-
onality is improved due to whitening procedure in the
algorithm. Moreover, we can control its orthogonality
by changing the learning rate µ [10]. Using the hard-
ware in which the EASI algorithm is implemented, we
can prepare the chaotic sequences whose inner prod-
ucts are almost zeros in real-time. We believe that
these chaotic sequences are very useful as spreading
sequences or channelization codes used for CDMA.
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