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abstract

To predict high dimensional multivariate information,
such as event sizes and timings, conventional frameworks
have usually treated event sizes or event timings separately.
However, in real worlds, we often able to measure the event
sizes and the event timings simultaneously. Therefore, it
is very natural to consider that if we can measure them,
it might be better to handle them simultaneously in or-
der to realize higher predictability. Following the idea, a
new prediction framework using both event sizes and tim-
ings has already been proposed. However, the framework
was applied only to a low-dimensional chaos. Therefor,
in the present paper, we applied the framework to high-
dimensional chaos with a nonlinear prediction method. As
a result, it is shown that the framework exhibits high perfor-
mance than the conventional framework even if it is applied
to high-dimensional chaos.

1 Introduction

In the real world, complex phenomena produced by de-
terministic nonlinear dynamical systems are ubiquitous. To
analyze such complex phenomena, one of the important
step is to construct a good model. To model these phenom-
ena, we usually use amplitude information of an observed
smooth time series. We can also use non-smooth time se-
ries, or event timings, such as interspike interval time series
produced from neurons.

However, in the real world, we are often able to measure
the amplitude information and the event timings simulta-
neously. For example, they are seismic events, and financial
indices. If we can measure them, it is very natural to expect
that if we can handle them simultaneously, we can construct
a better model, then realize higher prediction accuracy.

Following the idea, a new prediction framework using
such amplitude information and event timings has already
been proposed[1]. In Ref.[1], a low-dimensional chaos was
analyzed by the zeroth order prediction scheme on the
framework. Then, the high predictability is realized by the
framework. However, if we apply the framework to real
phenomena, such as seismic events or financial indices, it
is very important to analyze the validity of the framework
to high dimensional data. Therefore, in the present paper,
we applied the framework to high-dimensional chaos with
a nonlinear prediction method.

2 Prediction Framework

In the conventional frameworks, we usually use observed
amplitude values that are equally sampled, or observed tim-
ings, such as a spike series. In these cases, we only use one-
dimensional observed values produced from an unknown
dynamical system for prediction: we use only event sizes to
predict event sizes, and only event timings to predict event
timings. Then, we can recover the dynamics of an unknown
system from the information of observed time series by an
embedding theorem[2]. In the following, we described an
event size as V (n) and an event timing as T (n) (Fig.1).
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Figure 1 Two types of observed information.
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Figure 2 A prediction framework that combines both of ampli-
tude size and event timing.

However, there exists a system from which we can observe
not only the amplitude values but also the event timings.
In such a case, we use a prediction framework using V (n)
and T (n) simultaneously which are observed at the same
time n (Fig.2)[1].

3 Prediction Method

As for the prediction algorithm, we use the Jacobian-
matrix estimate prediction[3].

Let us first consider a nonlinear dynamical system:

x(t + 1) = f(x(t)), (1)

where f is a k-dimensional nonlinear map, x(t) is a k-
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dimensional state at time t. To estimate the Jacobian ma-
trix of f , we linearize Eq.(1) as follows:

δx(t + 1) = Df (x(t))δx(t), (2)

where Df (x(t)) is the Jacobian matrix at x(t), and δx(t)
is an infinitesimal deviation at x(t). To evaluate Df(x(t))
only with local information at x(t), we first extract a near-
neighbor set of x(t). If we denote the i-th near neighbor
of x(t) by x(tki

), (i = 1, 2, . . . , M), two displacement vec-
tors, yi = x(tki

)−x(t) and zi = x(tki
+ 1)− x(t + 1),

can be considered to correspond to δx(t) and δx(t + 1) re-
spectively in Eq.(2). If the norms of yi and zi are small
enough and the corresponding temporal evolution is small
enough, we can approximate the relation between yi and
zi by the linear equation: zi = G(t)y

i
, where the ma-

trix G(t) is an estimation of the Jacobian matrix Df(x(t))
in Eq.(2). In order to estimate G(t), we use the least-
square-error fitting which minimizes the average square er-

ror S = 1
M

P

M

i=1
|zi − G(t)y

i
|. In other words, we can

estimate G(t) by the following equations: G(t)W = C,
where W is the variance matrix of yi, and C is the co-
variance matrix between yi and zi. If W has its inverse
matrix, we can obtain G(t) from G(t) = CW −1[3, 4].

Now, we want to predict a future value of x(T ). Then,
we first search x(Tk0

) the nearest neighbor of x(T ). Next,
we calculate a displacement vector y′ = x(T ) − x(Tk0

),
and we estimate the Jacobian matrix G(tk0

) at x(tk0
) by

the above procedure with x(Tki
)(i = 1, 2, . . . , M) and their

corresponding temporal evolution. If we define x̂(T + 1)
as the predicted future value of x(T ), we can denote the
predicted displacement vector ẑ′ = x̂(T +1)−x(Tk0

+1) by
ẑ′ = G(Tk0

)y′. Then, we can predict x̂(T + 1) as follows:
x̂(T +1) = G(Tk0

)(x(T )−x(Tk0
))+x(Tk0

+1). Repeating
the scheme for p time iteratively, we can predict the p step
future of x(T )[5].

4 Making Event Series

In order to confirm the effectiveness and validity of the
improved prediction framework, we first produce an event
series from a time series that shows chaotic behavior. We
use this event series to check the validity of the improved
framework. We define the event sizes as the local maxima
of x(t), and the event timings as the intervals between two
successive the maxima (Fig.3).

We use both of the event sizes and the event timings in
a reconstructed state space simultaneously. Because both
dynamic ranges are not same and the difference brings leads
to results, we normalized the event sizes and timings before
the prediction.

5 Simulation for High-Dimensional Data

In Ref.[1], Kanno et al. discussed a prediction problem of
a low-dimensional chaos by the zeroth order prediction on
the improved framework. In the present paper, we applied
the improved framework to the Mackey-Glass equation[6]
which shows a higher dimensional chaos then the one used
in Ref.[1]. In addition, we applied the Jacobian-matrix es-
timate prediction[3] which is the first order prediction.

At first, we produced an event series from the Mackey-
Glass equation which is described by the following delay
differential equation:

dx

dt
=

ax(t − ∆)

1 + x(t − ∆)c − bx,
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Figure 3 How to make event series to check the validity of the
method.

where a = 0.2, b = 0.1, c = 10, and ∆ = 20. If we use these
parameters, the Mackey-Glass equation produces chaos[7].

Then, we predicted the event sizes and event timings
by the conventional framework or the improved framework,
and compared those prediction performance. In the present
paper, we use a normalized time series that consists only
of event sizes with d = 2 and τ = 10, a normalized time
series that consists only of event timings with d = 2 and
τ = 10, and a normalized time series that consists event
size and timing (Fig.4). Figure 4 clearly shows that if we
use both event sizes and event timings, it is relatively easier
to unfold intersections on reconstructed attractors.

6 Evaluation Method

To evaluate the improved prediction framework, we used
the normalized root mean square error which is described
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Figure 4 (a) A reconstructed attractor of a normalized time
series that consists only of event size with d = 2 and τ = 10.
(b) A reconstructed attractor of a normalized time series that
consists only of event timings with d = 2 and τ = 10. (c) A
reconstructed attractor of a normalized time series that consists
event size and timing.

by the following equation:

E =

N
X

n=1

(z(n) − ẑ(n))2

N
X

n=1

(z(n) − z̄(n))2
,
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Figure 5 (a) Results of event size prediction, and (b) Results of
event timing prediction. The horizontal axis shows the number
of data (maxima), and the vertical axis shows the prediction
accuracy E.

where z(n) is a true time series, ẑ(n) is a predicted time
series, z̄(n) is a mean value of z(n), and N is the data length
of z(n). In this metric, If E is close to zero, the prediction
accuracy is better.

7 Prediction Results

We show the prediction results of the event series pro-
duced by the Mackey-Glass equation. At first, we predicted
the one-step futures of the event sizes and timings for each
data length by the conventional framework or the improved
framework, and compared those prediction accuracy. In
Fig.5(a), we show the results of the root mean square er-
rors of the predicted event size. The prediction accuracy
of the improved framework is better than the conventional
frameworks. Moreover, in Fig.5(b), we show the results
of the root mean square errors of the event timing predic-
tion. The prediction accuracy of the improved framework
becomes good as well as the event size case.

Next, we predicted the event sizes and timings in each
prediction step by the conventional framework or the im-
proved framework, and compared those prediction accu-
racy. Here, the data length was set as 2100. In Fig.6(a),
we show the results of the root mean square errors of the
predicted event size. The prediction accuracy of the im-
proved framework is better than the conventional frame-
works. Moreover, in Fig.6(b), we show the results of the
root mean square errors of the event timing prediction. The
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Figure 6 (a) Results of event size prediction, and (b) Results
of event timing prediction. The horizontal axis shows prediction
step, and the vertical axis shows the prediction accuracy E.

prediction accuracy of the improved framework becomes
good as well as the event size case.

Finally, we examined the predictability in case of chang-
ing ∆. We compared the improved framework with the
conventional one for several values of ∆ of the Mackey-
Glass equation. In Fig.7(a), we show the results of the root
mean square errors of the predicted event size. Moreover,
in Fig.7(b), we show the results of the root mean square
errors of the event timing prediction. When we predicted
the event sizes or timings, because the prediction accuracy
of the improvement framework is higher for comparatively
larger ∆, we can confirm that the improvement framework
is also valid for a higher dimension dynamical system.

8 Conclusions

In the present paper, we applied the improved prediction
framework[1] to a high-dimensional chaos with the first or-
der prediction, and compared the its performance to the
conventional one. As the results, we confirmed that the im-
proved framework is more appropriate than conventional
frameworks even for a high-dimensional case. As a future
work, we have to treat another time series, especially real
time-series data. The research of TI was partially supported
by Grant-in-Aids for Scientific Research (C) (No.17500136)
from JSPS.
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Figure 7 (a) Results of event size prediction, and (b) Results
of event timing prediction. The horizontal axis shows parameter
∆ of the Mackey-Glass equation, and the vertical axis shows the
prediction accuracy E.
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