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Abstract—Nano-technology has developed to the level
of direct control of single molecules and atoms. Recent ex-
perimental result with AFM has demonstrated the lateral
atom interchange at room-temparature. In this paper, we
discussed the modeling of two atom interchange on ma-
terial surface with van der Waals force interaction. The
numerical result show that coupled resonance can be the
mechanism of the atom interchange phenomena.

1. Introduction

Since 1990s, experimental results have been reported on
direct control of single molecules and atoms with use of
scanning tunneling microscope (STM) and atomic force
microscopy (AFM) [1, 2, 3, 4]. These experiments suc-
ceeded in positioning targeted single adatom to designated
place on the material surface using sensing probe of STM
or AFM. These processes have been also studied theoreti-
cally [5] and numerically [6]. In the continuation of this ef-
fort, recent experiment has succeeded in interchanging two
adjacent adatoms on the surface by vibrating excitation of
van der Waals force using AFM probe [4]. This success of
atom interchange shows the possibility of direct control of
nonconducting particles and building nano structure with
mixture of different types of atoms and molecules on the
surface. In this paper, we discuss the possibility of atom
interchange between two different types of adatoms adja-
cent to each other on the material surface by the excitation
of periodic external force. The surface and the adatoms in-
teract each other with van der Waals (vdW) force and this
vdW force is modeled by Lennard Jones (LJ) potential. In
this model, two adatom particles are placed on the homo-
geneous material surface and they are trapped in the LJ po-
tential field of the surface. The potential field of the surface
is supposed to be identical on the two different adatoms,
which means the nonlinear springs between the surface and
each particles are same. Two adjacent adatoms also interact
each other radially with LJ potential. In the discussion the
resonant motion means the position interchange between
the two particles or the break-out motion from the potential
field which means the relative distance between the surface
and a particle or the distance between the particles increase

infinitely.
In this paper, we make a simple model to describe the

atom interchange on the material surface and discuss the
possibility of this resonant motion with the numerical sim-
ulation.

2. Two Particle Model Description

2.1. Model of Material Surface and Two Particles

Simplified model is studied to understand the dynamics
of position interchange of two particles on the surface. As
a simple model to describe two particle motion under the
influence of potential field between the surface and the par-
ticles, the surface is modeled as y-axis and the position of
two particles are given by the coordinates on the xy-plane
to describe the distance from the surface and the distance
between the particles. The configuration of the model is
shown in Fig. 1.

Figure 1: Two adatoms on material surface.

Here m1 and m2 are the masses of the two particles. x1
and x2 are the distance of two particles from the material
surface and y1 and y2 are the y coordinates of two particles
with respect to any choice of origin on the surface. It is as-
sumed that the potential field by the surface is identical on
both particles and the potential field between two particles
is weaker than the potential by the surface. Since the LJ
potential field has minimum point, two particle system has
a equilibrium point which is invariant under the translation
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in y-direction. In the analysis, two particles undergo the os-
cillatory motion where the distance between the y-axis and
particles and between particles are close to the equilibrium
distances. The Hamiltonian can be written in the form:

H =
(m1 ẋ1)2

2m1
+

(m1ẏ1)2

2m1
+

(m2 ẋ2)2

2m2
+

(m2ẏ2)2

2m2

+V1(x1) + V1(x2) + V2(r12),
(1)

where r12 = ((x2 − x1)2 + (y2 − y1)2)1/2.
The LJ potentials are given as follows:
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where εi, i = 1, 2, is the depth of the potential well and
σi, i = 1, 2, is the collision diameter, the distance at which
the potential is zero in each potential field. The distance at
which Vi = −εi and the interparticle force becomes zero is
21/6σi. The LJ potentials have the shape as shown in the
Fig.2
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Figure 2: The schamatic graph of Lennard Jones potential

The dynamics of two particles is hamiltonian motion and
its equation of motion can be written as the Hamilton’s
equation. Nondimensional variables can be introduced as
follows:

q1 =
x1

σ1
, q2 =
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σ1
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σ1
,
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ẋ2

σ1
, p4 =

ẏ2

σ1
.

In these non-dimensional variables, the equation of mo-

tion becomes as follows:


q̇1 = p1 , q̇2 = p2 , q̇3 = p3 , q̇4 = p4,
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(2)

where R = ((q3−q1)2+(q4−q2)2)1/2 and Ai, ω and φi are the
non-dimensional amplitude and frequency and phase lag of
the periodic excitation.

2.2. Small Oscillation near EP

The small oscillation analysis about the EP shows the ex-
istence of three nontrivial characteristic modes of the two
particle motion and different characteristic frequencies cor-
respond to each mode. To simplify the linear analysis, y-
axis is replaced by a single fixed particle and the motion
between one fixed particle and two free particles is stud-
ied. LJ potentials are replaced by the quadratic potentials
of linear spring by the taylor expansion. The Taylor series
for scalar valued function of multi variables has the follow-
ing form:

T (x) = H(X0) + ∇H(X0)T (X − X0)

+
1
2

(X − X0)T∇2H(X0)(X − X0) + · · · , (3)

where ∇H is gradient and ∇2H is Hessian. X0 is 4-vector
representing the equillibrium point and X is position vec-
tor. ∇H vanishes at X0 and the small oscillation can be
approximated with quadratic potential near the EP.

In the linear analysis, one characteristic frequency is
zero and this frequency corresponds to the rotational sym-
metry of the free particle motion around the fixed particle.
There are three positive eigenvalues in this linear system
and they correspond to each characteristic mode.

3. Simulation of Atom Interchange

3.1. Parameter Setting

Parameters for numerical estimation is given in Table 1.
The parameter values are arbitrarilly chosen in a reasonable
range since the simulation is aimed for understanding on
possible dynamics of simplified model.
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Table 1: Parameter setting
Symbol Value
ε1 25 × 10−21 J
ε2 15 × 10−21 J
σ1 0.3 nm
σ2 0.2 nm
m1 2 × 10−10 kg
m2 3 × 10−10 kg

3.2. Numerical Simulation

The numerical model is simulated with the variation of
the frequencies and amplitudes of the periodic external
force and the responsive motion of two particles is studied.

3.2.1. Free Oscillation

The free oscillation started from the initial position near
the EP with zero velocity. In the simulation result, the x-
directional frequency is observed to be about 40kHz and y-
directional frequency is about 55kHz. The initial condition
is set as follows:

q1(0) = 1.1 , q2(0) = 0.35 , q3(0) = 1.1 , q4(0) = −0.35 ,

pi(0) = 0 , i = 1, 2, 3, 4 ,

The characteristic frequencies in the linear approximation
near EP is in the range of 200kHz and this difference from
that of direct observation of numerical simulation comes
from that the LJ potential is not symmetric about the EP.
Particles stay in the potential region outside of EP much
longer time and in this region the paticle motion has low
frequency.

0 0.2 0.4 0.6 0.8 1

x 10
−3

1.08

1.1

1.12

1.14

1.16

t(sec)

x1
(n

od
im

)

0 0.2 0.4 0.6 0.8 1

x 10
−3

0.34

0.36

0.38

0.4

0.42

0.44

0.46

t(sec)

y1
(n

od
im

)

0 0.2 0.4 0.6 0.8 1

x 10
−3

1.08

1.1

1.12

1.14

1.16

t(sec)

x2
(n

od
im

)

0 0.2 0.4 0.6 0.8 1

x 10
−3

−0.41

−0.4

−0.39

−0.38

−0.37

−0.36

−0.35

−0.34

t(sec)

y2
(n

od
im

)

Figure 3: Free oscillations of two particles

3.2.2. Atom Interchange at Resonant Frequency

In the numerical simulation, the frequency of the exter-
nal force is set at 30560Hz with A1 = 7.5 × 108, A2 =

5 × 108, φ1 = 100 and φ2 = 0 with the same initial con-
dition as free oscillation. Here the external excitation is
given only by x-directional force. In the setting of pa-
rameters given in the table 1, the atom interchange is ob-
served as in Figure 4 and 5. Varing the frequency and am-
plitude of excitation, resonant frequency of the system is
found to be about 30kHz. Here the x-directional excita-
tion induced the resonance of the two particle system in y-
directional oscillation and caused the energy transfer into
the y-directional vibration via the coupled radial interac-
tion. With the excitation of 30kHz periodic external force
the amplitude needed for inducing the resonant motion is
relatively small compared with that in different frequency
range.
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Figure 4: Atom interchange at 30kHz excitation
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Figure 5: Trajectories of atom interchange
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3.2.3. Two Particle Motion at 200kHz Excitation

Setting the excitation frequency as 200kHz which is in
the normal operational frequency range of AFM, the re-
quired amplitude for resonant motion is about 50 to 100
times bigger than that of 30kHz. In the simulation the same
amplitudes of excitation force as in 30kHz case are tested
and this excitation doesn’t cause the resont response of the
particle motion and the responsive motion is very similar
to free oscillation. When the amplitudes of excitation are
increased to A1 = 4.5 × 1010, A2 = 3 × 1010, two particles
show the resonant motion and one particle breaks out of the
potential field of the surface.
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Figure 6: Particle motion at 200kHz excitation

3.3. Center of Mass Motion

The center of masses (CM) of two particle system shows
y-directional momentum conservation under the periodic
external force in x-direction. The x-coordinate of the
CM shows oscillatory motion, but the y-coordinate of CM
shows no change in time and keeps constant value even
under the atom interchange or break-out motion of parti-
cles. This CM motion shows that the system keeps the
y-directional momentum constant even when x-directional
oscillatory motion induces y-directional oscillation in non-
linear coupled system of two particles and the energy in
y-directional oscillation can increase.

4. Concluding Remarks

In this paper we discussed the simple model of the po-
sition interchange of adatoms on the material surface in-
duced by the periodic external force in the form of vdW
force. Numerical result shows the existence of the possi-
ble resonant frequency and its minimum excitation force
for inducing resonant motion of the system. In the simple
model of nonlinear coupled two particle system, we con-
firmed that x-directional excitation can cause y-directional

resonant oscillation via the coupling radial interaction be-
tween two particles.

Controlability and separability of many particle system
on material surface or in the liquid will be our future work.
In the study of many particle system, dissipation of energy
should be an important factor to be considered.
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