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Abstract—We derive a generalized law of dissipa-
tion in physical systems based on force proportional
to velocity law. We apply this law to the derivation
of dissipation in kinetic equations and discuss appli-
cations to mass spectrometers and sensors using the
vibrating tips of atomic force microscopes. This the-
ory is necessary to provide a theoretical background
for recent experimental and numerical studies in this
area.

1. The role of dissipation in single atom ma-
nipulation

Recently, much attention has been drawn to the pos-
sibility of the manipulation of single particles using a
tip of atomic force microscope [1, 2, 3, 4, 5, 6]. The
proven advantages of this technique involve amazing
accuracy in the positioning of particles as small as sin-
gle atoms. Most of the studies have concentrated on
the manipulation of single – or a few – atoms. For
industrial applications, however, we need to study the
possibility of a massive parallel application of this tech-
nique. Of particular interest here is the recent work
by Hikihara and Yamasuhe [7] which outlined the pos-
sibility of separation of particles using a two paral-
lel AFM tips. It was demonstrated numerically that
for a single atom, such a possibility of separation ex-
ists due to the presence of two potential wells in the
Lennard-Jones potential. The dissipation in that sys-
tem enforces the eventual collapse towards one of the
potential wells. In order to make this technique appli-
cable to industrially relevant processes like mass spec-
troscopy or element separation, we must understand
the statistics of a large number of particles in the dou-
ble potential well. The statistical behavior of a large
number of particles in the momentum p and coordinate
q space is usually described by the probability distri-
bution function f(p, q, t). As the initial step, we can
assume the collisionless plasma approximation and say
that in the absence of dissipation, the probability dis-
tribution function f(p, q, t) satisfies the Vlasov equa-
tion

∂f

∂t
+

{
f,

δH

δf

}
= 0 , (1)

where for any two functions f(p, q) and g(p, q) we de-
fine the canonical Poisson Bracket

{f, q} =
∂f

∂q

∂g

∂p
− ∂g

∂q

∂f

∂p
. (2)

However, equation (1) does not include dissipation and
therefore must be corrected, as dissipation plays an
essential role in the choice of potential minima in the
Lennard-Jones potential. The question is how to ex-
tend Vlasov kinetic equation (1) to include dissipation
in a sensible way. In the case of dissipation caused by
the collisions, it is customary to introduce the Boltz-
mann collision integral on the right hand side of the
equation (1). However, this approach is extremely
cumbersome and very little analytic progress can be
achieved. We shall take an alternative approach and
formulate the Double bracket dissipation. More pre-
cisely, we suggest the following dissipation term for
the Vlasov equation (1)

∂f

∂t
+

{
f,

δH

δf

}
=

{
f,

{
µ[f ],

δH

δf

}}
, (3)

where µ[f ] is the mobility functional (in phase space).
In this paper, we show that it is a consistent dissi-
pation term based on the generalized Darcy’s law of
motion (force being proportional to the velocity).

2. Dissipation as the Darcy’s law and disipative
bracket

In general, dissipation may be understood as resis-
tance to the motion. One can think that at the micro-
scopic level, each individual molecule experiences re-
sistance force that is proportional to the velocity. This
law of resistance is expected to hold at small scales and
we call it the Darcy’s law which should viewed as a
generalization of the Darcy’s law of fluid motion in
porous media.

If we consider density of particles ρ with the energy
functional E[ρ], the local potential of particle inter-
action at a point is δE/δρ, Darcy’s law says that lo-
cal velocity is ∇δE/δρ so the local Darcy’s velocity is
given by

u = µ∇δE

δρ
. (4)
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Then, conservation law for the density ρd3x takes the
well-known form

∂ρ

∂t
= −div (ρu) = −£uρ . (5)

where £uρ is the Lie derivative of the quantity ρd3x
(density) with respect to the vector field u [8].

Let us consider the evolution of more general quan-
tity which is necessary for the description of particles
that are non-spherical and thus need both density and
orientation for complete microscopic description. The
conservation law for density can be re-written as a gen-
eralization of (4,5) as follows [9, 10, 11]:

“The local value of κ remains invariant along
the characteristic curves of a flow, whose ve-
locity depends on κ through an appropriate
Darcy Law.”

This principle may be formulated in symbols as,

dκ

dt
(x(t), t) = 0 along

dx
dt

= u[κ] , (6)

which can again be written as

∂κ

∂t
= −div (κu) = −£uκ , (7)

where the flow velocity u[κ] is to be determined for
each type of order parameter κ and is a generalization
of (4). The key question for understanding the phys-
ical modeling that would be needed in making such a
generalization is, “What is its corresponding Darcy’s
Law?” Namely, how does one determine the vector
field u[κ] in (6) when κ is an arbitrary geometrical
quantity?

3. The diamond operator

That second equality closing the problem has been
identified in [9, 10, 11] using the diamond (�) opera-
tion as the dual of the Lie derivative under integration
by parts for any pair (κ, b) of dual variables and any
vector field v. That operator generalizes the gradient
in the definition of Darcy’s velocity (4). The diamond
operator is defined as:

〈κ � b,v〉 = 〈κ,−£vb〉 . (8)

Then , the generalized Darcy’s velocity for an arbitrary
geometric quantity κ is given by

u =
(

µ[κ] � δE

δκ

)]

, (9)

where the ] raises indices to create a vector field from
the result of diamond operator. Here, we have intro-
duced the mobility µ[κ] that has the same geometric
meaning (i.e. is a tensor of the same type) as κ. The
reader is referred to the papers [9, 10, 11] for tech-
nical details and explicit expressions for the diamond
operators for various tensor quantities.

4. The dissipative bracket

Very important for our further discussion of the dis-
sipation is the notion of the dissipative bracket, de-
scribing the evolution of energy. Using (7,9) and the
definition of diamond operator (8), we obtain the the
corresponding energy equation: follows from (8, 6, 9)
as

dE

dt
=

〈∂κ

∂t
,

δE

δκ

〉
=

〈
−£(µ[κ] � δE

δκ )]κ,
δE

δκ

〉
= −

〈(
µ[κ] � δE

δκ

)
,
(
κ � δE

δκ

)]
〉

. (10)

The formula for energy in (10) suggests the following
bracket notation for the time derivative of a functional
F [κ],

dF [κ]
dt

=
〈∂κ

∂t
,

δF

δκ

〉
=

〈
−£(µ[κ] � δE

δκ )]κ ,
δF

δκ

〉
= −

〈(
µ[κ] � δE

δκ

)
,
(
κ � δF

δκ

)]
〉

=: {{E , F }}[κ] (11)

The properties of the GOP brackets {{E , F }} defined
in equation (11) are determined by the diamond oper-
ation and the choice of the mobility µ[κ]. For physical
applications, one should choose a mobility that satis-
fies strict dissipation of energy, i.e. {{E , E }} ≤ 0.
A particular example of mobility that satisfies the en-
ergy dissipation requirement is µ[κ] = κM [κ], where
M [κ] ≥ 0 is a non-negative scalar functional of κ.
(That is, M [κ] is a number.) Requiring the mobil-
ity to produce energy dissipation does not limit the
mathematical properties of the GOP bracket. For ex-
ample, the dissipative bracket possesses the Leibnitz
property with any choice of mobility. That is, it satis-
fies the Leibnitz rule for the derivative of a product of
functionals. In addition, the dissipative bracket formu-
lation (11) allows one to reformulate the GOP equa-
tion (6) in terms of flow on a Riemannian manifold
with a metric defined through the dissipation bracket,
as discussed in more detail in [9].

5. The dissipative bracket in the (p, q) space

We shall now turn our attention to the statisti-
cal description of the particle behavior in the phase
space. It is common to involve the distribution func-
tion f(p, q, t) as described in the introduction. For
no dissipations and no collisions, the evolution equa-
tion for the distribution function is given by (1). The
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dissipative bracket (11) and the concept of the dia-
mond operator plays a crucial role in our further dis-
cussion of the dissipation in phase space. Namely, we
define the dissipative bracket of two arbitrary func-
tionals E[f ], G[f ] of Darcy’s velocity in (p, q) space as
follows:

{{E , F }} = −

〈{
µ[f ] ,

δE

δf

}
,

{
f ,

δF

δf

} 〉

=

〈{
f,

{
µ[f ] ,

δE

δf

}}
,

δF

δf

〉
, (12)

where < · , · > means, as usual, the scalar product
and integral over the phase space. The bracket {· , ·}
is simply the canonical Poisson bracket of two func-
tions. The mobility µ[f ] is a functional of f that has
both p and q component and is a modeling choice, the
restriction on µ is that the bracket (12) is positive def-
inite. Since the functional F [f ] and therefore δF/δf is
arbitrary, we get equation (3) by integration by parts
[12, 13].

It is interesting that the double bracket dissipation
of the type (3) was suggested before, starting with
Kandrup [14] within the framework of aggregation of
galactic disks. Similar equations also arose in Kauf-
mann [15] and Morrisson [16] in the context of plasma
physics. The concept of double bracket dissipation was
also used in [17] to model dissipation in ideal fluids.
All these works have used µ[f ] = αf where α is a con-
stant. This approach does not allow for single-particle
solutions f = δ(p−P (t), q−Q(t)), whereas using a gen-
eral mobility functional µ[f ] retains the single-particle
solutions. In addition, our equation (3) preserves the
entropy S =

∫
f log f , as well as arbitrary function of

the entropy [12].
It has been further demonstrated that the double

bracket dissipation (3) allows natural generalizations
for the case when the interacting particles are not
spherical, but have arbitrary shape [13]. This allows
for derivation of a consistent dissipative kinetic equa-
tion for proteins of arbitrary shape (and not just rigid
rods, as is common in polymer theory, for example).
These interesting and important aspects of our theory
will be pursued in the future.
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