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Abstract—This paper studies a kind of ill-conditioned
algebraic equations, which have very close two ill-
conditioned solutions. The equations are related to non-
linear resistive networks.

1. Introduction

Rump[1] derived extraordinarily ill-conditioned linear
simultaneous equations under the floating-point arithmetic,
where condition numbers may be larger than 1050. These
equations are very useful to examine the quality of accu-
racy guaranteed algorithms to solve linear equations[2]. To
examine the quality of various accuracy guaranteed algo-
rithms for solving nonlinear equations, it is desirable to
generate other kinds of ill-conditioned equations. In this
paper we study on a very special kind of nonlinear equa-
tions, which are derived from a transistor circuit and for
which the conditions of a globally unique solution[3]–[7]
and the number of solutions[8]–[11] have been investigated
for a long time. We show that they may possess very
closely located ill-conditioned solutions, which means that
the Jacobian matrices of these solutions have fairly large
condition numbers. We suppose that the values treated are
real and we consider moderately (but not extraordinarily)
ill-conditioned equations, which means the condition num-
ber of 105 ∼ 1010.

A typical equation difficult to solve accurately is an
equation with multiple solutions such as (x − 1)10 = 0. But
the variety of them is small. The purpose of this paper is to
generate easily many equations difficult to solve.

2. Equations

Circuit equations of a transistor circuit, where each tran-
sistor is represented by the Ebers-Moll models, are written
as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1eβ1 x1

α2eβ2 x2

...
αneβ1 xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where the parameters ai j and bi are determined by the val-
ues of resistors and voltage/currrent sources, and there-
fore are restricted to some physical (circuit-theoretic) con-
straints. In this paper however we ignore these physical
restrictions and assume their parameters as arbitrary real
values.

Without loss of generality we can assume that Eq. (1)
has a solution x∗ [x∗1, · · · , x∗n]T = [0, · · · , 0]T . where the
superscript T means the transpose. This is easily done by
choosing bi appropriately. The Jacobian matrix J of Eq.(1)
at the solution x∗ is given as:

J = diag
[
α1β1eβ1 x∗1 α2β2eβ2 x∗2 · · · αnβneβn x∗n

]

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Let an n × n matrix P = [pi j] have a large condition
number such as 105 ∼ 1010 and let

J = P. (3)

Instead of Eq.(1), we consider the following equations:

γx2
1 + p11x1 + p12x2 + p13x3 + · · · + p1nxn = 0

γx2
2 + p21x1 + p22x2 + p23x3 + · · · + p2nxn = 0

· · · · · · · · ·
γx2

n + pn1x1 + pn2x2 + pn3x3 + · · · + pnnxn = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4)

which is derived by truncating the third and the higher order
terms of the Taylor series of αieβi xi in Eq.(1), where we
assumed that all γi ≡ αiβ

2
i are the same value γ.

3. Case of n = 2

First we consider the simplest case of n = 2. Then

γx2
1 + p11x1 + p12x2 = 0 (5)

γx2
2 + p21x1 + p22x2 = 0 (6)

Let
Δ ≡ |P| = p11 p22 − p12 p21 (7)

Assumption 1:|Δ| is very small, i.e., 10−5 ∼ 10−10

Assumption 2:|γ| is of a moderate magnitude, i.e., 10−2 ∼
102

Assumption 3: pi j looks random numbers of the values
10−1 ∼101.

Then the condition number
∑

p2
i j/|Δ| is roughly 105 ∼

1010

The matrix P is, for example, like P =
[

1 2
2 4.0001

]
.

Let

g1 ≡ γx2
1 + p11x1 + p12x2 (8)

g2 ≡ γx2
2 + p21x1 + p22x2 (9)
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To solve Eqs.(5) and (6) is equivalent to solve

g1 = 0, g2 = 0 (10)

In the following we show that Eqs.(5)–(6) has a solution
very close to the solution x∗ = 0 under some mild assump-
tions like Assumptions 2 and 3. We will show it by three
different ways. In any case we use the fixed point theorem
for the proof; that is, we rewrite the equation as

x = G(x) (≡ b0 + b2x2 + b3x3 · · ·) (11)

where G(x) does not contain the first order term of x. If
b0 > 0, let X = [ 1

2 b0,
3
2 b0] and prove:

Condition A: G(X) ⊂ X
Condition B: There is a constant 0 < k < 1 such that
|G(x′) −G(x′′)| ≤ k|x′ − x′′| for x′, x′′ ∈ X

3.1. Direct calculation (Method 1)

On the assumption that p12 � 0 Eq.(5) yields:

x2 = −
p11x1 + γx2

1

p12
(12)

which is substituted into Eq.(6). Then we have:

p21x1 − p22
p11x1 + γx2

1

p12
+ γ

⎧⎪⎨⎪⎩ p11x1 + γx2
1

p12

⎫⎪⎬⎪⎭
2

= 0 (13)

from which we have:

γ3x3
1 + 2γ2 p11x2

1 + γ(p2
11 − p12 p22)x1 − p12Δ = 0 (14)

If we assume that the coefficient of x1 in Eq.(14) has a
moderate magnitude (10−2 ∼ 102), we have from Eq.(14)

x1 ≈ p12

γ(p2
11 − p12 p22)

Δ (≡ x10) (15)

Substituting this into Eq.(12), we have:

x2 ≈
p2

12 p21 − p3
11

γ(p12 p22 − p2
11)2
Δ (≡ x20) (16)

Thus we have a candidate of an approximate solution
(x10, x20) near the origin. We have to show rigorously that
there exists a solution. Eq. (14) can be rewritten as:

x1 = x10 +
γp11x2

1

p12 p22 − p2
11

+
γ2 x3

1

p12 p22 − p2
11

(≡ G(x1)) (17)

For G(x1) we can easily verify that Conditions A and
B above hold if |Δ| is sufficiently small, i.e., if |Δ| <∣∣∣∣ (p12 p22−p2

11)2

2γp11 p12

∣∣∣∣. This condition is usually satisfied on Assump-
tions 2 and 3.

This direct method is easy to verify a solution, but can
not be generalized to the case of n > 2.

3.2. Taylor series expansion of g2 with respect to x1
(Method 2)

In this case we regard x2 as a function of x1 satisfying Eq.
(5) and we regard the function g2 in Eq. (9) as a function
of x1. To investigate the property of g2(x1) in Eq. (9) we
expand it around the origin x1 = 0. By noting g2(0) = 0,
g2(x1) can be expanded in the form:

g2(x1) ≡ 1
1!

dg2

dx1

∣∣∣∣∣
x1=0

x1 +
1
2!

d2g2

dx2
1

∣∣∣∣∣∣
x1=0

x2
1 +

1
3!

d3g3

dx3
1

∣∣∣∣∣∣
x1=0

x3
1 + · · ·

(18)
where

g′2 =
dg2

dx1
= 2γx2 x′2 + p21 + p22 x′2 (19)

g′′2 =
d2g2

dx2
1

= 2γ[(x′2)2 + x2 x′′2 ] + p22 x′′2 (20)

g′′′2 =
d3g2

dx3
1

= 2γ[3x′2 x′′2 + x2 x′′′2 ] + p22 x′′′2 (21)

g(4)
2 =

d4g2

dx4
1

= 2γ[3(x′′2 )2 + 4x2 x′′′2 + x2 x(4)
2 ] + p22x(4)

2 (22)

To obtain x(k)
2 (k = 1, 2, · · ·) in Eqs.(19)–(22) we differ-

entiate Eq.(5) successively with respect to x1 as follows:

2γx1 + p11 + p12x′2 = 0 (23)
2γ + p12x′′2 = 0 (24)

x(k)
2 = 0 (k = 3, 4, · · · , ) (25)

By letting x1 = 0 in the above, we have:

x′2
∣∣∣
x1=0 = −

p11

p12
, x′′2

∣∣∣
x1=0 = −

2γ
p12

(26)

x(k)
2

∣∣∣
x1=0 = 0 (k = 3, 4, · · · , ) (27)

Substituting Eqs.(26) and (27) into Eqs.(19), we have

g′2
∣∣∣
x=0 = p21 − p22

p11

p12
= − Δ

p12
(28)

g′′2
∣∣∣
x=0 = 2γ

(
− p11

p12

)2

+ p22

(
− 2γ

p12

)
= 2γ

p2
11 − p12 p22

p2
12

(29)

g′′′2

∣∣∣
x=0 = 2γ

[
3
(
− p11

p12

) (
− 2γ

p12

)]
= 2γ2 p11

p2
12

(30)

g(4)
2

∣∣∣
x=0 = 2γ

⎡⎢⎢⎢⎢⎣3
(
− 2γ

p12

)2⎤⎥⎥⎥⎥⎦ = 24γ3 1
p2

12

(31)

g(k)
2

∣∣∣
x=0 = 0 (k = 5, 6, · · · , ) (32)

Thus the Taylor expansion ends in a finite terms (and
g2(x1) is a polynomial of order 4, which is the same as Eq.
(14) except for a constant multiplier. Thus this method is
essentially the same as the direct method.

We stated Method 2 in connection to Method 3 below.

3.3. Taylor series expansion of g1 with respect to x1
(Method 3)

In this case we regard x2 as a function of x1 satisfying Eq.
(6) and we regard the function g1 in Eq. (8) as a function
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of x1. To investigate the property of g1(x1) we expand it in
the Taylor series. For simplicity we denote g1 by g.

g(x1) ≡ 1
1!

dg
dx1

∣∣∣∣∣
x1=0

x1 +
1
2!

d2g
dx2

1

∣∣∣∣∣∣
x1=0

x2
1 +

1
3!

d3g
dx3

1

∣∣∣∣∣∣
x1=0

x3
1 + · · ·

(33)

As for Eq.(33), we have by Eq.(8):

g′ =
dg
dx1
= 2γ1 x1 + p11 + p12x′2 (34)

g′′ =
d2g
dx2

1

= 2γ1 + p12 x′′2 (35)

g(k) =
dkg
dxk

1

= p12 x(k)
2 (k = 3, 4, · · · , ) (36)

So we have to calculate x(k)
2 (k = 1, 2, · · ·) in Eq.(34)–(36).

Differentiating Eq.(6),

γ(x′2x2 + x2x′2) + p21 + p22x′2 = 0 (37)

Eq.(37) can be rewritten by using the notation
(

m
h

)
=

m!/h!(m − h)! as follows;

γ

[(
1
0

)
x′2 x2 +

(
1
1

)
x2 x′2

]
+ p21 + p22 x′2 = 0 (38)

Similarly by differentiating Eq.(38) successively we have:

γ
[( 2

0

)
x′′2 x2 +

( 2
1

)
x′2 x′2 +

( 2
2

)
x2 x′′2

]
+ p22x′′2 = 0 (39)

Generally we have

γ

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

h=0

(
k − h

h

)
x(k−h)

2 x(h)
2

⎤⎥⎥⎥⎥⎥⎥⎦ + p22x(k)
2 = 0 (40)

By using these formula, we can calculate the values x(k)
2

at x1 = 0 as follows:

x′2 = − p21

p22
, x′′2 = −

γp2
21

p3
22

× 2 (41)

x′′′2 = −γ
2 p3

21

p5
22

× 2 × 3! = −γ
2 p3

21

p5
22

× 12 (42)

x(4)
2 = −γ

3 p4
21

p7
22

× 5 × 4! = −γ
3 p4

21

p7
22

× 120 (43)

Continuing the similar calculation, we generally have:

x(k)
2 = −

γk−1 pk
21

p2k−1
22

× δk × k! (44)

where δk obeys the following nonlinear recursive formula
as follows:

δ1 = 1, δ2 = 1, δk =

k−1∑
h=1

δk−hδh (45)

Note that no cancellation occurs in the above calcula-
tion.

For the first several δk (k = 3, 4, · · · , ) we have:

δ3 = 2, δ4 = 5, δ5 = 12, δ6 = 42, δ7 = 132
δ8 = 429, δ9 = 1430, δ10 = 4862 (46)

Thus δk increases very rapidly. We have

1. δk/δk−1 increases with k.

2. limk→∞ δk/δk−1 = 4

Unfortunately the authors do not have the rigorous proof of
the above but verified it numerically.

From the above we have:

|x(k
2 | ≤

γk−1 pk
21

p2k−1
22

× 4k−1 × k! (47)

Then we have

g(x1) = g1x1+g2x2
2 +g3x3

2 + · · · = x1(g1+g2x2+g3x2
2 + · · ·)

(48)
where

g1 = p11 + p12
dx2

dx1

∣∣∣∣∣
x1=0
=
Δ

p22
(49)

g2 =
1
2!

⎛⎜⎜⎜⎜⎜⎜⎝2γ + p12
d2x2

dx2
1

∣∣∣∣∣∣∣
x1=0

⎞⎟⎟⎟⎟⎟⎟⎠ = γ
⎡⎢⎢⎢⎢⎢⎣1 − p12

⎛⎜⎜⎜⎜⎜⎝− p2
21

p3
22

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ (50)

gk = p12

⎛⎜⎜⎜⎜⎜⎝−γ
k−1 pk

21

p2k−1
22

⎞⎟⎟⎟⎟⎟⎠ δk (k = 3, 4, · · ·) (51)

Suppose that |p22| has a moderate magnitute. Then from
Eq.(49) dg

dx1

∣∣∣∣ has a magnitude of Δ.
Due to Eq.(51) we see that Eq.(48) converges for |x1|

small (|x1| < 4p2
22/γp21). Let

G(x1) ≡ −g1

g2
− g3

g2
x2

1 −
g4

g2
x3

1 −
g5

g2
x4

1 − · · · (52)

Then a solution of g(x1) = 0 is given as a solution of

x1 = G(x1) (53)

Since |Δ| is very small, we guess from Eq.(49) that

x1 ≈ −g1/g2 (≡ x10) (54)

may be its solution. Conditions A and B are easily verified
for Eq.(54)

4. General case of n > 2

For simplicity we first discuss the case of n = 4 in Eq.(4)
instead of a general n. We use a similar method as Method
3 in the above. For simplicity let

x̃ ≡ [x2, x3, x4]T , p̃1· ≡ [p12, p13, p14]T , p̃·1 ≡ [p21, p31, p41]T

and let P̃ be an 3 × 3 matrix obtained from P by deleting
the first row and the first column. Let

g(x1) ≡ γx2
1 + p11x1 + p̃1· x̃ (55)

Then we have

g′ = 2γx1 + p11 + p̃1· x̃′ (56)
g′′ = 2γ + p̃1· x̃′′ (57)
g′′′ = p̃1· x̃′′′ (58)
g(4) = p̃1· x̃(4) (59)
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x̃(k)(k = 1, 2, · · ·) can be calculated by differentiating suc-
cessively

γx̃2 + p·1x1 + P̃x̃ = 0 (60)

with respect to x1 where x̃2 means [x2
2, x

2
3, x

2
4]T . That is,

γ
d

dx1

{
x̃2

}
+ p·1 + P̃x̃′ = 0 (61)

γ
dk

dxk
1

{
x̃2

}
+ P̃x̃(k) = 0 (k = 2, 3, · · ·) (62)

The above equations are formally almost the same as
Eqs.(37)– (40). Therefore we can use a similar calcula-
tion as δk in Eqs.(44), (45), etc. However there is a great
difference between Eqs. (62) and (40) since P̃ in (62) is
a matrix but not a scalar. Due to this fact the expression
of x̃(k) becomes very complex. To give its expression we
define some notations: Let Δ

( i
j

)
be the minor of pi j and

Δ

(
i1i2
j1 j2

)
are similarly defined. Then for example,

x′2
∣∣∣
x1=0 = −Δ

( 1
2

)
/Δ

( 1
1

)
(63)

x′′2
∣∣∣
x1=0 = − 2γ

Δ

( 1
1

)3 ×
[
Δ

( 1 2
1 2

)
Δ

( 1
2

)2

+ Δ

( 1 3
1 2

)
Δ

( 1
3

)2
+ Δ

( 1 4
1 2

)
Δ

( 1
4

)2]
(64)

p̃1· P̃−1 =

[
Δ

( 2
1

)
Δ

( 3
1

)
Δ

( 4
1

) ]
(65)

g′ = Δ/Δ
( 1

1

)
(66)

g′′ = 2γ +
1

Δ

( 1
1

)3 ×
[
Δ

( 2
1

)
Δ

( 1
2

)2
+ Δ

( 3
1

)
Δ

( 1
3

)2

+ Δ

( 4
1

)
Δ

( 1
4

)2]
(67)

From the process of calculation we see that the element of
x(k)

k is of the form:

γk−1N/Δ
(

1
1

)2k−1

(68)

where N is sum of the product of k Δ
(

1 i
1 j

)
(i, j = 2, 3, 4)

and Δ
(

1
j

)
( j = 2, 3, 4). However we cannot expect the

cancellation among these terms since even for n = 2 case
there occur no calculation.

Let the maximum values of Δ
(

1 i
1 j

)
, Δ

(
1
j

)
, and

Δ

(
i
1

)
be respectively M1, M2, and M3. Then for general

n we can estimate |gk| as follows (proof omitted):

|gk | ≤ [4(n − 1)]kγk−1 M3 Mk
1 Mk

2/Δ

(
1
1

)2k−1

(69)

Therefore
∑∞

k=0 gkxk
1 converges for |x1| small. We see that

the case n = 2 is a special case of the above result.
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Appendix: Generation of the matrix P

Let K be a real skew matrix. Then

T = (E − K)(E + K)−1

is an orthogonal matrix.
We choose T1 and T2 by randomly generating skew ma-

trices K and let P be a matrix

P = T1diag[λ1, λ2, · · · , λn]T2

where |λi| (i = 1, · · · , n − 1) are slmost the same value and
|λn| is very small, i.e., 10−5.
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