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Abstract—As most analysis tools for nonlinear dynam-
ical systems are dedicated to either continuous or discrete
models, we propose an analysis method for hybrid systems.
Using the Poincaré map, we transform the results of par-
tial analysis over the continuous components into a discrete
mapping. We can then apply more conventional methods in
order to seek for critical values and obtain bifurcation dia-
grams in the parameters space. In this paper, we describe
this method, discuss different approaches to conduct such
analysis, and finally present an application example with a
3-state Alpazur oscillator.

1. Introduction

Hybrid systems are mostly the result of continuous sys-
tems that undergo discrete changes. It can take various
forms: apparition of frictions in a mechanical system,
switch in an electronic circuit. Though the solution func-
tion to model those systems usually remains continuous,
it presents points of non-derivability where such discrete
changes occur. We propose using a relevant Poincaré map
in order to adapt more usual methods and conduct the bi-
furcation analysis. We will also consider the numerical im-
plementation aspects and illustrate it with some results ofa
modified version of the Alpazur oscillator.

2. Principles

2.1. Modeling the System

Let us consider a system written by a set of differential
equations defined by smooth functions piecewisely, i.e., for
the statei:

dX
dt
= fi(X), (1)

where,

X(t) =

























x0
...

xn−1

























∈ Rn. (2)

Within each state there is a solution function such as:

Xi(t) = ϕi(t,Xi0) with Xi(0) = Xi0, (3)

whereXi0 is an arbitrary initial value.
Now, based on the switching rules and the definition of a
period of our system, we set the Poincaré map, placing its
sections at the switching points. We assume for now that
the switching conditions for each state can be expressed
as a function of the system variables. e.g., for the statei:
qi(X) = 0.
The map is therefore expressed as:

Πi = {Xi ∈ Rn | qi = 0}
Ti : Πi → Πi+1

Xi 7→ Xi+1 = Xi(τi) = ϕi(τi ,Xi(0)).
(4)

We are now able to perform a local analysis over each par-
tial orbit delimited by those Poincaré sections. Thus the
Poincaré mapping is defined as a differentiable map:

T =
∏

Ti . (5)

We finally apply a projection fromRn to Rn−1 due to the
equation of the final state switch conditionqm−1 = 0:

p : Π0→ Σ0

X0 7→ U0,
(6)

which we use as a discrete definition of our system.

Figure 1: Abstract representation of the Poincaré map
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2.2. Analysis approach

In order to compute phase portraits for a given system,
we simply integrate the differential equations. The switch-
ing conditions previously defined are constantly verified in
order to use the variational equations matching the current
state. We usually employ a Runge Kutta method due to its
performances.
For the computation of fixed points, we integrate the par-
tial derivatives of the differential equations in parallel of the
solution:

d
dt
∂ϕi

∂Xi−1
=
∂ fi
∂X
∂ϕi

∂Xi−1
where

∂ϕi

∂Xi−1
(0) = I . (7)

We compute the Jacobian matrix of each local map:

dXi

dXi−1
=
∂ϕi

∂Xi−1
+

dXi

dt
∂τi

∂Xi−1
, (8)

thus we can express the Poincaré map:

dXm

dX0
=
∏ dXi

dXi−1
. (9)

We then apply the projectionp and obtain the Jacobian:

DTl(U0) =
dUm

dU0
. (10)

For a fixed point we solve:

Tl(U0) = Um = U0. (11)

We inject the approximation of the tangent to the solution
DTl in the Newton method in order to compute an accu-
rate value ofU0. If our initial value is in the domain of
convergence, we converge toward the solution within a few
iterations.
Finally, concerning the critical values required to compute
bifurcation diagrams, we use the characteristic equation of
our system in order to determine an extra equation. De-
pending on the desired bifurcation diagram, we chooseλ,
one of the parameters from the diagram space, as an extra
degree of freedom to compute a solution of our new equa-
tions set:

χl(µ) = det(DTl − µIn−1) = 0. (12)

µ is defined by the bifurcation type. So our new problem
can be written:

F(U0, λ) =

[

Um− U0

χl(µ)

]

= 0. (13)

Which means we are to compute the following Jacobian
matrix:
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(14)

The second row of Eq. (13) requires the second deriva-
tives of the solutions of variational equation (7). Comput-
ing a number of second derivatives can be done two ways:

one based on an analytical approach, consisting in simply
deriving once more the first derivative elements; the sec-
ond one is more numerical since it consists in approaching
the tangent by differentiation, performing a multiple inte-
gration using∆ shifted input variables. The first approach
might appear more elegant but depending on the switch-
ing conditions, even the simplest models will involve very
elaborated equations at this step. Let us now consider the
second alternative: we compute the following elements the
same way we did in the fixed point algorithm:

Um(U0, λ), Um(U0 + ∆U, λ), Um(U0, λ + ∆λ),
DTl(U0, λ), DTl(U0 + ∆U, λ), DTl(U0, λ + ∆λ).

(15)
We derive the Jacobian matrix elements by differentiation:

dUm

dU0
=

Um(U0 + ∆U, λ) − Um(U0, λ)
∆U

dUm

dλ
=

Um(U0, λ + ∆λ) − Um(U0, λ)
∆λ

dDTl

dU0
=

DTl(U0 + ∆U, λ) − DTl(U0, λ)
∆U

dDTl

dλ
=

DTl(U0, λ + ∆λ) − DTl(U0, λ)
∆λ

.

(16)

The second approach introduces some tricky questions
such as how to determine a relevant∆, but it turns out to
be much easier to implement and gives satisfying perfor-
mances.

3. Three-States Alpazur oscillator

3.1. Model description

In order to illustrate our method with some results, we
will now consider the analysis of this slightly modified ver-
sion of Alpazur oscillator.

Figure 2: 3-States Alpazur oscillator

The continuous portion of the system is merely a BVP os-
cillator, while the discrete feature is relying on a switch.
The position of the latter represents the current state. By
using suitable transformations on the variables, we can ex-
tract the following model:
For State 1:
{ dx

dt = f0(x, y) = −rx − y
dy
dt = g0(x, y) = x+ (1− A0)y− 1

3y3 + B0.
(17)
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For State 2:
{ dx

dt = f1(x, y) = −rx − y
dy
dt = g1(x, y) = x+ (1− A1)y− 1

3y3 + B1.
(18)

For State 3:
{ dx

dt = f2(x, y) = −rx − y
dy
dt = g2(x, y) = x+ (1− A2)y− 1

3y3 + B2.
(19)

Now for the switching rules:

q0 = y− h
q1 = y− b
q2 = y−m,

(20)

and the following switching order:

State 1

State 2
State 3

Figure 3: Simple State switching order view

This results in the following type of phase portrait in the
multiple State-associated plans view:

Figure 4: Hysteresis of the switching constraints of
Alpazur oscillator

Such model is very convenient because the mapping is
strait forward: even within the local maps,y values are
fixed thanks to the switching conditions. We can therefore
extract the mapped variableu = x. We define the map:

T0 : Π0 → Π1

x0 7→ x1 = ϕ0(τ0, x1, y1)
y0 7→ y1 = φ0(τ0, x1, y1) = h

T1 : Π1 → Π2

x1 7→ x2 = ϕ1(τ1, x2, y2)
y1 7→ y2 = φ1(τ1, x2, y2) = b

T2 : Π2 → Π0

x2 7→ x3 = ϕ2(τ2, x3, y3)
y2 7→ y3 = φ2(τ2, x3, y3) = m

T = T0 ◦ T1 ◦ T2 : Π0 → Π0

x0 7→ x3 = ϕ(τ, x3).
(21)

3.2. Fixed points

As previously exposed, the problem of Fixed points is as
follows:

x3 − x0 = 0. (22)

In order to compute the appropriate correction, we need to
compute:

DTl =
dx3

dx0
=

dx3

dx2

dx2

dx1

dx1

dx0
. (23)

For each Statei we compute:

dxi

dxi−1
=
∂ϕi

∂xi−1
+ fi(xi , yi)

∂τi

∂xi−1

∂τi

∂xi−1
=

−
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∂xi−1

gi(xi , yi)
,

(24)

where we numerically integrate the required elements:

d
dt

[

xi

yi

]

=
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(25)

We now use the Newton method to compute the correction
to be applied:

x′0 = x0 −
x3 − x0

dx3
dx0

. (26)

We obtain fixed points such as in the following phase por-
trait:

Figure 5: Phase portrait of a single period at the critical
value (period-doubling bifurcation)

3.3. Critical values

In this case the characteristic equation is fairly simple:

χ(µ) = det(DTl − µ) = 0, (27)

hence the Jacobian matrix:
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We compute its elements:

dx3

dx0
=

x3(x0 + ∆x, λ) − x3(x0, λ)
∆x

dx3

dλ
=

x3(x0, λ + ∆λ) − x3(x0, λ)
∆λ

dDTl

dx0
=

∂x3
∂x0

(x0 + ∆x, λ) − ∂x3
∂x0

(x0, λ)

∆x
dDTl

dλ
=

∂x3
∂x0

(x0, λ + ∆λ) −
∂x3
∂x0

(x0, λ)

∆λ
.

(29)

Through combination with conventional methods, we ob-
tain the following results:
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Figure 6: Bif. diagram of the 3-state Alpazur oscillator

In the B1 / B2 parameter space, and for the following pa-
rameter values:

r = 0.1 A1 = 0.2 A2 = 2.0 A3 = 0.8
B3 = −0.1 m= −0.1 b = −0.3 h = −1.0

I stands forperiod doublingbifurcation (µ = −1), while
G stands fortangentbifurcation (µ = 1), and finallyGB
stands forglobal bifurcation (herecollision bifurcation).
We illustrate these results with some phase portraits:
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Figure 7 & 8: Chaotic behavior far from any critical value
(Fig. 7) and close to a period doubling bifurcation (Fig. 8)
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Figure 9 & 10: Fixed point at period doubling bifurcation
(Fig. 9) and at collision bifurcation (Fig. 10)

Though we do not intend to address the collision bifurca-
tions in this paper, there is no doubt it represents a major
aspect of hybrid systems. In our case, it conditions the ex-
istance of numerous orbits. This means in order to make
sure to obtain an exhaustive bifurcation diagram, we would
have to first determine all the collision bifurcation lines and
then find the fixed points for each collision-free area. For
this system, we just computed one bifurcation curve (GB)
by setting a Poincaré map on the point where the tangent
to the solution is parallel to the switching border and iter-
ate until that point reaches the border itself. It is also worth
noticing that the change from 2 to 3 states radically changes
the bifurcation diagram, although we chose switching con-
ditions to keep phase portraits very much alike (Original
Alpazur oscillator has been analysed by Ref. [1] with this
method, while the model was proposed and analysed by
Ref. [2] using a linear approximation).

4. Conclusion

In between other considerations, one major issue when
performing such analysis is the problem of precision. Since
our final target is a computer-based tool, we rely on mul-
tiple numerical methods, representing as many sources of
numerical error. Our efforts are now mainly focused on the
balance between precision, stability, genericity, and com-
putation time. Eventually, the question of Collision bifur-
cations which are typical of hybrid systems seems to be the
logical continuity of this work.
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