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Abstract—As most analysis tools for nonlinear dynam-Within each state there is a solution function such as:
ical systems are dedicated to _e|ther contmuous_or discrete X(1) = @it Xo) with  Xi(0) = X, 3)
models, we propose an analysis method for hybrid systems.
Using the Poincaré map, we transform the results of pawhereX is an arbitrary initial value.
tial analysis over the continuous components into a discreow, based on the switching rules and the definition of a
mapping. We can then apply more conventional methods Reriod of our system, we set the Poincaré map, placing its
order to seek for critical values and obtain bifurcation-diasections at the switching points. We assume for now that
grams in the parameters space. In this paper, we descril[lj@ SWitChing conditions for each state can be expressed
this method, discuss fiierent approaches to conduct suctfs a function of the system variables. e.g., for the state

analysis, and finally present an application example with @&(X) = 0.
3-state Alpazur oscillator. The map is therefore expressed as:

I = {Xi e R"| g = 0}
T IL = Iy 4)
X Xip1 =X (Ti) = Qi (Ti, Xi (O))

Hybrid systems are mostly the result of continuous sysye are now able to perform a local analysis over each par-
tems that undergo discrete changes. It can take varioys| orbit delimited by those Poincaré sections. Thus the

forms: apparition of frictions in a mechanical systempgincare mapping is defined as &elientiable map:
switch in an electronic circuit. Though the solution func-

tion to model those systems usually remains continuous, T= nTi- (5)
it presents points of non-derivability where such discret@ve finally apply a projection fronR" to R*? due to the

phanges occur. We propose using a relevant Poincaré m uation of the final state switch conditigq 1 = O:
in order to adapt more usual methods and conduct the bi-

1. Introduction

furcation analysis. We will also consider the numerical im- p : Ilp— 2o (6)
plementation aspects and illustrate it with some resulgs of Xo + Uo,
modified version of the Alpazur oscillator. which we use as a discrete definition of our system.

2. Principles

2.1. Modeling the System

Let us consider a system written by a set dfefiential
equations defined by smooth functions piecewisely, i.e., fo

the state: q
X
5t = 0. (1)

where,
Xo
Xt =|: eR". (2)

Xn-1

Figure 1: Abstract representation of the Poincaré map
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2.2. Analysisapproach one based on an analytical approach, consisting in simply

deriving once more the first derivative elements; the sec-

In order to compute phase portraits for a given systenzmd one is more numerical since it consists in approaching

we simply integrate the fferential equations. The SW|tch-_ the tangent by dierentiation, performing a multiple inte-

mr?j c:)FdltlontshprSv:(i)utislyr/]dlefmedtiarr(]e Cr?]n?t?]?;ly ;’he“ﬂe?r' ration usingA shifted input variables. The first approach
orderto use the variational equations matching the curre ight appear more elegant but depending on the switch-

state. We usually employ a Runge Kutta method due to '}ﬁg conditions, even the simplest models will involve very

performances. elaborated equations at this step. Let us now consider the

For the computation of fixed points, we integrate the Palsecond alternative: we compute the following elements the

tial derivatives of the dferential equations in parallel of the same way we did in the fixed point algorithm:

solution:
E 390i _ (9_f| 590i where acpi (O) — (7) Um(UO, /l)’ Um(UO + AU, /1), Um(UO, A+ A/l),
dtoXii1 90X 9%t X, DTi(Uo, 1), DTi(Up+AU, 1), DT|(Ug, 1+ A/l).(ls)
We compute the Jacobian matrix of each local map: We derive the Jacobian matrix elements bijatientiation:
dx _ dpi | dX oni (8) dUp  Um(Uo + AU, 1) — Un(Uo, 1)
dXi_1  0X_1 dt 9Xi_1 dUo = AU
thus we can express the Poincaré map: dUm _ Um(Uo, 2+ Ad) = Um(Uo, 1)
A
X 77 d% o) Riaan _ DTi(Uo+ A% - DT(Uo. ) (16)
dx 1 ldx_. du AU
b _ _ dDT,  DTi(Uo, A+ Ad) - DT,(Ug, )
We then apply the projectiopand obtain the Jacobian: aL Al .
DT(Uo) = % (10) The second approach introduces some tricky questions
dUo such as how to determine a relevaytbut it turns out to
For a fixed point we solve: be much easier to implement and gives satisfying perfor-
mances.
Ti(Uo) = Um = Uo. (11)

We inject the approximation of the tangent to the solutiod. Three-States Alpazur oscillator
DT, in the Newton method in order to compute an accu-
rate value ofUg. If our initial value is in the domain of 3.1
convergence, we converge toward the solution withinafew | order to illustrate our method with some results, we
iterations. will now consider the analysis of this slightly modified ver-
Finally, concerning the critical values required to congut gjop, of Alpazur oscillator.

bifurcation diagrams, we use the characteristic equation o
our system in order to determine an extra equation. De-
pending on the desired bifurcation diagram, we chobse
one of the parameters from the diagram space, as an extra
degree of freedom to compute a solution of our new equa-
tions set:

M odel description

xi() = detOT, — pln-1) = 0. (12)

u is defined by the bifurcation type. So our new problem
can be written:

_ Um - U0 _
FUo. ) = [ xi(u) ] =0 (13) Figure 2: 3-States Alpazur oscillator
Which means we are to compute the following Jacobiamhe continuous portion of the system is merely a BVP os-
matrix: cillator, while the discrete feature is relying on a switch.
— — e — The position of the latter represents the current state. By
gBS}I dg/'ln (14) using suitable transformations on the variables, we can ex-
tract the following model:
dUo d/l. _ For State 1:
The second row of Eq. (13) requires the second deriva-
tives of the solutions of variational equation (7). Comput- d—’t‘ = fo(x,y) = -rx -y 17
ing a number of second derivatives can be done two ways: _3t’ =go(Xy) = X+ (1 - Ag)y - %y3 + Bo. an
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For State 2:

{ &= fi(xy) =-rx-y a8)
d_il = gl(X,Y) =X+ (1— Al)y_ %ya + Bl~
For State 3:
dx
q = (xy) =-rx-y
t 19
{ %’:gz(x7y):X+(1—A2)y—%y3+82‘ ( )
Now for the switching rules:
Qo=y-h
qu=yY- b (20)
R=y-m
and the following switching order:

S

Figure 3: Simple State switching order view

g Xl _ fi(X7 y)
This results in the following type of phase portrait in the iy | ] glxy)

multiple State-associated plans view:

on TN : State 1

3.2. Fixed points

As previously exposed, the problem of Fixed points is as
follows:

X3 — Xg = 0. (22)

In order to compute the appropriate correction, we need to

compute:
_ dX3 _ dX3 dx dxq

DTi=—=———. 2
! dxg dxdx dx (23)
For each Statewe compute:
dx dgi a7i
= — + fi(x,. i) —
dx-1  0X-1 i yl)axi—l
__0¢i (24)
ot %1

-1 Gi(%,¥)
where we numerically integrate the required elements:

State 1: fromxg
State 2: fromx,
State 3: fromx,

Jgi ofi ofi i
OXi-1 _ ax oy OXi-1
i1 X oy OXi-1

(25)

Sla

AN Ogi
/ / » - ‘ 1
PRl P where | %1 }(O):[ 0 }
y A 1 i - 7 L 0%-1
: — We now use the Newton method to compute the correction
/ 0 Ixha": / to be applied:
Y=o X3 5 , X3 — Xo
 EMEE R Cipyy Seied Xp = X0 = =g (26)
/ ca T X L T E e ax
/ e i A
[ | We obtain fixed points such as in the following phase por-
1 | TE LD trait:
Ty B L N R ] . f 3
... i
Y g hEET Py State2
b X . X2 L Pt i
L Sl o & wuE g g g g State 1
L X
Figure 4: Hysteresis of the switching constraints of
Alpazur oscillator Vo ¢ )
Such model is very convenient because the mapping is -0s state 3

strait forward: even within the local mapg,values are
fixed thanks to the switching conditions. We can therefore

extract the mapped variable= x. We define the map:

To Il - I

Xo = X1 = @o(To, X1, Y1)

Yo +  Y1=d¢o(ro,X1,Y1) =h
T, I - I

X1 P X2 = @1(T1, X2, Y2)

yi = Yo=¢1(t1,%,¥2) =D
T2 . Hz — Ho

X2 P X3 = @212, X3, Y3)

Yo = Ya=¢2(T2,X3,¥3) =m
T=TpoTi0T, : Il — Ilp

Xo = X3 = (,O(T, X3).

(21)

State 2
-1

-15
-1 -0.5 0 05 1 15

X

Figure 5: Phase portrait of a single period at the critical
value (period-doubling bifurcation)

3.3. Critical values

In this case the characteristic equation is fairly simple:

x(u) = detDT, —u) =0, (27)
hence the Jacobian matrix:
M _ 1 9%
|G | 28)
%o 0a
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We compute its elements: Though we do not intend to address the collision bifurca-
tions in this paper, there is no doubt it represents a major

% - X3(Xo + A% 4) — X3(%0. 1) aspect of hybrid systems. In our case, it conditions the ex-
gXXO Xs(Xo, A + AAA); ~ xs(%, ) istance of numerous orbits. This means in order to make
- _ B0 370 sure to obtain an exhaustive bifurcation diagram, we would
c?lél)T 0% (w0 4 AA)? 2) = 2 (%0, ) (29) have to firstde_terming all the collision t_)if_urcation linewla
L _ 9% ’ 0% then find the fixed points for each collision-free area. For
dxo % AX % this system, we just computed one bifurcation cu@&)Y
dDT, %(XO’A +Ad) - %(XO’ ) by setting a Poincaré map on the point where the tangent
di A ’ to the solution is parallel to the switching border and iter-

pate until that point reaches the border itself. It is alsotivor
noticing that the change from 2 to 3 states radically changes
the bifurcation diagram, although we chose switching con-

Bifurcation diagram ditions to keep phase portraits very much alike (Original

‘ ‘ ‘ Alpazur oscillator has been analysed by Ref. [1] with this

method, while the model was proposed and analysed by

Ref. [2] using a linear approximation).

Through combination with conventional methods, we o
tain the following results:

4. Conclusion

In between other considerations, one major issue when
performing such analysis is the problem of precision. Since
our final target is a computer-based tool, we rely on mul-
o tiple numerical methods, representing as many sources of

numerical error. Ourorts are now mainly focused on the
Figure 6: Bif. diagram of the 3-state Alpazur oscillator balance between precision, stability, genericity, and -com

Inthe B: / B d for the followi putation time. Eventually, the question of Collision bifur
rgr:]eeterlv/a luzegf’:lrameter space, and for the following pa-ins which are typical of hybrid systems seems to be the

r=01 A =02 Ay=20 Ag=08 logical continuity of this work.
B;=-01 m=-01 b=-03 h=-10
| stands forperiod doublingbifurcation ¢« = -1), while  Acknowledgments

G stands fortangentbifurcation ¢« = 1), and finallyGB ) .
stands forglobal bifurcation (herecollision bifurcation).  1he authors would like to thank NOLTA2007 organiz-

We illustrate these results with some phase portraits: N9 committee members for their fruitful suggestions and
comments. They would also like to thank the University of

Tokushima (Japan) and the INSA of Toulouse (France) for
15 . s their respective support.
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