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Abstract—This paper studies nonlinear dynamics of ba-
sic dc-dc and ac-dc converters in current mode control.
In order to avoid the model becoming too complex, we
make the simplifying assumption that voltage regulation
is achieved in high frequency modulation and the much
slower dynamics of output side can be represented by a
constant voltage source. Under this assumption we can
derive the 1D return map that describes switching phase
of the converters. The map enables us to analyze the dy-
namics precisely. Typical periodic/chaotic phenomena and
related bifurcation phenomena are demonstrated.

1. Introduction

Switching power converters are important objects to ana-
lyze nonlinear dynamics and have been studied extensively
[1]-[2]. The nonlinear switching can cause a variety of
chaos and bifurcation phenomena. Analysis of the phe-
nomena is basic to develop novel bifurcation theory and
to design efficient circuits. However, systematic analysis is
not easy because of complex nonlinearity. This paper stud-
ies nonlinear dynamics of basic dc-dc and ac-dc converters
[3] - [8] through 1D return maps of switching phase. In
such power converters, various switching logics are avail-
able and most popular among them are the voltage mode
control (VMC) and the current mode control (CMC). This
paper studies CMC that is used for achieving faster tran-
sient response in boost converters and for lower voltages
with higher current capabilities by current sharing in paral-
lel converters [9]. Also, the CMC can be a key to cause a
variety of nonlinear phenomena [1], [2].

First, we introduce basic dc-dc boost converters in CMC.
In order to avoid the model becoming too complex, we
make the simplifying assumption that voltage regulation is
achieved in high frequency modulation, so that the much
slower dynamics of the outer voltage loop can be ignored,
and the output side can be represented by a constant volt-
age source [3] [5]. Under this assumption we derive a
very simple model having piecewise constant (PWC) vec-
tor field and piecewise linear (PWL) solutions. From the
PWC model we can derive the 1D return map of switch-
ing phase. The map is given by an explicit PWL formula
and enables us to analyze chaos and bifurcation phenom-
ena precisely. Second, we introduce basic ac-dc convert-
ers in CMC. Applying simplifying assumption as the dc-
dc converters, we can derive 1D return map of an implicit
form based on exact piecewise solution. Using the map we
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Figure 1: DC-DC boost converter and PWC model.

can investigate rich periodic and chaotic phenomena and
related bifurcation phenomena.

It should be noted that the 1D return map is available
not only for dc-dc and ac-dc boost converters but also for a
variety of switching circuits including delta modulator for
PWM control [10]. Analysis results of this paper is impor-
tant not only as basic study but also for practical applica-
tions. For example, the results provide basic information
to realize stable operation, distortion removal [7] and EMI
improvement [4].

2. DC-DC Boost Converters

Fig. 1 shows a basic dc-dc boost converter with
CMC switching. The voltage regulation is assumed to be
achieved in high frequency modulation, enabling us to ana-
lyze only the dynamics of the inner current loop. Under the
CMC, when the switch is on, the inductor current i rises,
and when it reaches a reference value Iref , the switch S is
turned off. When S is off D turns on, and the inductor cur-
rent decays. It is turned on by the arrival of the next rising
edge of a free running clock signal of period T . While the
switch is off, if the inductor current decays to zero, the sys-
tem enters the third state in which both S and D do not
conduct. Thus there can be three possible states:

State 1: S conducting, D blocking and 0 < i < Iref

State 2: S blocking, D conducting and 0 < i < Iref

State 3: S and D both blocking and i = 0
The switching rules are:

State 1 −→ State 2: when i = Iref

State 2 −→ State 3: when i = 0
State 2 or State 3 −→ State 1: when t = nT

If the operation of the converter includes State 3, it is said
to be in DCM, otherwise it is said to be operating in CCM.
As stated earlier, we make the simplifying assumption that
T << RC and voltage regulation is achieved. In this case
we can replace the RC with the constant voltage source V2.
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Figure 2: Typical waveforms for a = 0.6. (a) periodic be-
havior in CCM for b = 0.5, (b) chaotic behavior for b = 0.9
( overwritten ), (c) periodic behavior in DCM for b = 2.0,
(d) periodic behavior in DCM for b = 3.5

Thus the circuit equation becomes

L
d
dt

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V1 for State 1
−(V2 − V1) for State 2
0 for State 3

(1)

where 0 < V1 < V2 and all the circuit elements are assumed
to be ideal. This is the PWC model having PWL solutions.
We introduce the dimensionless variables and parameters

τ =
t
T
, x =

i
Iref
, a =

TV1

LIref
, b =

T (V2 − V1)
LIref

(2)

through which Eq. (1) is transformed into

d
dτ

x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a for State 1
−b for State 2
0 for State 3

, a > 0, b > 0 (3)

and the switching rules become

State 1→ State 2 if x = 1
State 2→ State 3 if x = 0
State 2 or 3→ State 1 if τ = n
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Figure 3: Return maps for a = 0.6. (a) periodic orbit for
b = 0.5, (b) chaos for b = 0.9 ( overwritten ), (c) SSPO with
period 2 for b = 2.0, (d) SSPO with period 1 for b = 3.5.

Note that the original five parameters (T , L, Iref , V1, V2) of
the PWC model are integrated into the dimensionless two
parameters a and b of Eq.(3). Fig. 2 (a) shows typical pe-
riodic behavior in CCM. As the parameter b increases, this
periodic phenomenon is changed to be chaotic as shown in
Fig. 2 (b). As the parameter b increases further, the system
becomes to operate in DCM as shown in Fig. 2 (c) and (d).
In the DCM a variety of periodic behavior appears.

We now derive 1D return map. Let τn denote n-th
switching moment at which x reaches the threshold 1 and
State 1 is changed into State2. Since τn+1 is determined by
τn we can define 1D map of the form τn+1 = f (τn). Since
the system is peiod 1, we introduce phase variable θn = τn
mod 1 and the map can be reduced into the return map from
I ≡ [0, 1) to itself: θn+1 = F(θn) = f (θn) mod 1. When a
trajectory starts from x = 1 at time τn and returns x = 1
at time τn+1, there are two possibilities; Type 1: x does not
reach x = 0 and Type 2: x reaches x = 0. If b > 1 these
two types exist and the map is described by

f (θn) =

{ −p(θn − 1) + 1 for θa < θn ≤ 1
a−1 + 1 for 0 < θn ≤ θa (4)

where p ≡ b/a and θa ≡ 1 − b−1. If 0 < b < 1, Type 2 does
not exist hence the second branch with zero-slope does not
exist. It should be noted that the return map F of phase θ is
simpler than return map of state variables in [5].

Fig. 3 shows typical examples of the return map. If a > b
the return map has contracting slope |p| < 1 and exhibits
stable periodic orbit as shown in Fig. 3(a) 1. If a < b < 1

1Definition of stable periodic orbits can be found in [5]
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Figure 4: Bifurcation diagram for a = 0.6.

the map has expanding slope |p| > 1 and exhibits chaos as
shown in Fig. 3(b). If b > 1 the map has zero-slope and
exhibits superstable periodic orbits ( SSPOs ) as shown in
Fig. 3(c) and (d). They correspond to periodic behavior in
DCM ( Fig. 2 (c) and (d) ). These phenomena are summa-
rized in the bifurcation diagram in Fig. 4.

3. AC-DC Boost Converters

Fig. 5 shows a basic ac-dc boost converter with CMC
switching. The input v1(t) = V1| sin π

mT t| is an output of
rectifier where T is period of the clock signal and m is a
positive integer. The rectifier is omitted in the figure. In
this circuit, the reference value is not dc but has component
proportional to the input: Iref(t) = kv1(t) + I2. Under the
CMC, the possible states of switches are given by replacing
Iref for dc-dc converters with Iref(t).

State 1: S conducting, D blocking and 0 < i < Iref(t)
State 2: S blocking, D conducting and 0 < i < Iref(t)
State 3: S and D both blocking and i = 0

The switching rules are:
State 1 −→ State 2: when i = Iref(t)
State 2 −→ State 3: when i = 0
State 2 or State 3 −→ State 1: when t = nT
The output voltage regulation is assumed to be achieved

in high frequency modulation as the dc-dc converters. Ap-
plying this assumption (T << RC), the RC can be replaced
with the constant voltage source V2. Thus the circuit equa-
tion becomes

L
d
dt

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1(t) for State 1
v1(t) − V2 for State 2
0 for State 3

(5)
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Figure 5: AC-DC boost converter and PWC model.
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Figure 6: Typical waveforms for α = 1, γ = 1 and m =
10. (a) periodic behavior in CCM for β = 1.1, (b) chaotic
behavior for β = 1.7 ( overwritten ), (c) periodic behavior
in DCM for β = 2.3, (d) periodic behavior in DCM for
β = 2.8.

where 0 < v1(t) < V2. We introduce the dimensionless
variables and parameters

x =
i

kV1
, τ =

t
T
, α =

T
Lk
, β =

TV2

LkV1
, γ =

I2

kV1
(6)

through which Eq. (5) is transformed into

d
dτ

x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αs(τ) for State 1
αs(τ) − β for State 2
0 for State 3

(7)

where s(τ) = | sin πmτ|.

State 1 → State 2 if x = s(τ) + γ
State 2 → State 3 if x = 0
State 2 or State 3 → State 1 if τ = n

Fig. 6 (a) shows typical periodic waveform in CCM. As
the parameter β increases, this periodic behavior is changed
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into chaotic behavior as shown in Fig. 6 (b) and then to
periodic behavior in DCM as shown in Fig. 6 (c) and (d).

We derive the 1D return map in a similar manner to the
dc-dc converters. Let τn denote n-th switching moment at
which x reaches the threshold and State 1 is changed into
State2. Since τn+1 is determined by τn we can define 1D
map of the form τn+1 = f (τn). Since the system is period
m, we introduce phase variable θn = τn mod m and the
map can be reduced into the return map from Im ≡ [0,m)
to itself: θn+1 = F(θn) = f (θn) mod m.

Fig. 7 (a) shows a return map of a stable periodic orbit
corresponding to periodic behavior in CCM in Fig. 6 (a).
As β increases, the return map lost stability and the periodic
orbit is changed into chaotic orbit in CCM as shown in Fig.
7(b). As β increases further, zero-slope appears in the map
and we can observe rich SSPOs as shown in Fig. 7 (c) and
(d). They correspond to periodic behavior in DCM in Fig.
6 (c) and (d). These phenomena are summarized in the bi-
furcation diagram in Fig. 8. Such complex behavior relate
deeply to undesired operation such as current distortion.

4. Conclusions

Nonlinear dynamics of basic dc-dc and ac-dc converters
has been studied in this paper. In order to realize precise
analysis, we make the simplifying assumption that voltage
regulation is achieved in high frequency modulation and
derive the 1D return map that describes switching phase of
the converters. The map enables us to analyze rich periodic
and chaotic phenomena precisely.

Future problems are many, including; detailed analysis
of bifurcation phenomena of ac-dc converters, generaliza-
tion of 1D return map of switching phase and design and
experiments of practical circuits.
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