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Abstract—This paper studies switching rules of paral-
leled dc-dc converters. The switching rules are based on
the winner-take-all function and can realize multi-phase
synchronization automatically. It is suitable for efficient
current sharing with lower ripple. Using simple piecewise
constant model, we can analyze existence and stability of
desired operation. Presenting a simple test circuit, typical
dynamics can be confirmed experimentally.

1. Introduction

Paralleled dc-dc converters ( PDC ) have been studied
from both practical and fundamental viewpoints. The PDC
have common advantages of parallel systems such as im-
provement of reliability and fault tolerance. One important
ability of the PDC is lower voltages with higher current ca-
pabilities in the next generation micro-processors [1] [2].
In order to reduce size and losses of the filtering stages,
sharing output current with the lower ripple is required. In
PDC, several switching control techniques have been con-
sidered for efficient power supplies: digital logical control
[1], sliding surface control [3] wireless PWM control [4]
and so on. On the other hand the PDC are nonlinear dynam-
ical system having rich phenomena [8]. For example, PDC
exhibits multi-phase synchronization that can be changed
into a variety of periodic/chaotic phenomena. However,
analysis of such dynamics is not sufficient as compared
with single dc-dc converters [7].

This paper studies switching strategy for current-mode
control of PDC. In the PDC, one dc source is applied to
one load via N buck converters. We present two kinds
of switching strategy based on dynamic winner-take-all (
WTA ) function. As parameters are selected suitably, the
WTA-based switching can achieve N-phase synchroniza-
tion ( N-SYN ). In order to analyze the PDC dynamics we
simplify the PDC into a piecewise constant ( PWC ) model
that is well suited for precise analysis . Using the model we
can clarify parameters condition for stable N-SYN in con-
tinuous conduction mode ( CCM ) and hyperchaos. The
N-SYN in CCM is suitable to realize current sharing with
lower ripple. Adjusting parameters including clock period,
stable N-SYN in CCM is always possible. Presenting a
simple test circuit, typical phenomena can be confirmed
experimentally. These results provide basic information to
design efficient PDCs and to develop nonlinear dynamical
systems theory.
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Figure 1: Paralleled buck converters.

2. Paralleled Buck Converters

Fig. 1 shows the PDC consisting of N buck converters
( N ≥ 2 ) that share the output current: io ≡ ∑N

j=1 i j. The
j-th converter has a switch S j and a diode Dj which can be
either of the three states:

State 1: S j = ON , D j = OFF and 0 < i
State 2: S j = OFF , D j = ON and 0 < i
State 3: S j and D j = OFF and i = 0

We then present two kinds of switching strategy.
Strategy 1 ( Fig. 2 (a) ):

State 1 → State 2 if i j = J+
State 2 → State 3 if i j = 0
State 2 or State 3 → State 1 if i j = min at t = nT

where J+ is a upper threshold current and T is a clock
period. The dynamic WTA is used in switching to State 1:
if i j is the minimum among i1 to iN at t = nT then S j is
closed for nT ≤ t < (n + 1)T regardless of past situation
of S j. We refer to the minimum i j as the winner at t =
nT . Note that the N converters are connected through the
WTA-switching. Plural winners are possible only on State
3 where i j(nT ) = 0 must be minimum. If some converter
operates to ( not to ) include State 3, it is said to operate in
DCM ( CCM ).

Strategy 2 ( Fig. 2 (b) ):

State 2 → State 1 if i j = J− ≥ 0
State 1 → State 2 if i j = max at t = nT

where J− is a lower threshold current. The dynamic
WTA is used in switching to State 2: if i j is the max-
imum among i1 to iN at t = nT then S j is opened for
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Figure 2: Switching rules. (a) Strategy 1. (b) Strategy 2.

nT ≤ t < (n + 1)T regardless of past situation of S j. We
refer to the maximum i j as the winner at t = nT .

For simplicity we assume RC >> T and replace the load
with a constant voltage source Vo that is smaller than Vi.
We also assume that the diode is ideal, all other circuit ele-
ments are ideal and Lj = L. The circuit dynamics for each
state is described by Eq. (1).

L
d
dt

i j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Vi − Vo for State 1
−Vo for State 2
0 for State 3

(1)

Using the dimensionless variables and parameters:

τ =
t
T
, x j =

i j

J+

a =
T

LJ+
(Vi − Vo), b =

T
LJ+

Vo, Xt =
J−
J+

(2)

the circuit dynamics is normalized into Eq. (3).

d
dτ

x j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a for State 1
−b for State 2
0 for State 3

(3)

Strategy 1:
State 1 → State 2 if x j = 1
State 2 → State 3 if x j = 0
State 2 or State 3 → State 1 if x j = min at τ = n

Strategy 2:
State 2 → State 1 if x j = Xt

State 1 → State 2 if x j = max at τ = n

Note that the original parameters are integrated into three
dimensionless parameters a, b and Xt.

In order to consider dynamics of the PDC, let us recall
basic definitions in [6].

Let x = (x1, · · · , xN). The PDC is said to exhibit N-SYN
if Eq. (3) has periodic solution with period N such that
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Figure 3: Typical waveforms ( N = 3 ). Red, blue, green
and black waveforms denote x1, x2, x3 and X, respectively.
(a) Stable 3-SYN in CCM by Strategy 1 for (a−1, b−1) =
(1.2, 2.4) and Rp = 0. (b) Unstable 3-SYN in CCM by
Strategy 1 for (a−1, b−1) = (2.4, 1.2) and Rp = 0. (b’) Stable
3-SYN in CCM by Strategy 2 for Xt = 0.167. a−1, b−1 and
Rp = 0 are the same as (b). (c) Stable 3-SYN in DCM by
Strategy 1 for (a−1, b−1) = (1.4, 1.2) and Rp = 0.238.

x(τ+ N) = x(τ) and each cell becomes winner once during
one period 0 ≤ τ < N.

Let xp = (xp1, · · · , xpN) be a solution of N-SYN. The N-
SYN is said to be stable for initial state if x(τ) converges
on xp(τ) as time goes for x(0) = xp(0) + ε(0) where ε(0) is
a small initial perturbation.

For a periodic solution with period M, x(τ + M) = x(τ),
ripple factor is given by Rp = maxX(τ) − minX(τ), where
0 ≤ τ < M, X(τ) ≡ ∑N

j=1 x j(τ) is the dimensionless output
current.

Fig. 3 (a) and (b) show stable 3-SYN and unstable 3-
SYN in CCM with low ripple in Strategy 1. We can not
observe unstable N-SYN but chaotic behavior. Applying
Strategy 2 to this unstable N-SYN, it changed to be stable
as shown in Fig. 3 (b’). Fig. 3 (c) shows DCM operation.
In general, DCM operation has higher ripple than CCM
operation. For existence and stability of N-SYN we have
the following results.

Proposition 1: In Strategy 2, N-SYN in CCM exists for
all a and b. If a < b then the N-SYN is stable. If a > b
then the N-SYN is unstable. The apex Xmax = 1 is realized
if Xt = 1 − N

a−1+b−1 ≥ 0.
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Figure 4: Existence and stability of N-SYN. (a) Parameter
condition for N = 3 in Strategy 2. (b) Parameter condition
for N = 3 in Strategy 1.

Proposition 2: In Strategy 1, N-SYN in CCM exists for
N < a−1+b−1. The N-SYN is stable if a > b and is unstable
if a < b. The system operates in DCM for N > a−1 + b−1

Fig. 4 shows the parameters condition for N = 3. As
suggested in Fig. 3, the PDC of stable N-SYN in CCM has
lower ripple factor than other modes. In order to realize sta-
ble N-SYN in CCM, a−1 + b−1 should exceed N. Referring
to Eq. (2), we obtain

a−1 + b−1 =
LJ+
T

Vi

Vo(Vi − Vo)
(4)

That is, adjusting T and/or J+ and/or L, the stable N-SYN
in CCM can be achieved. Proofs of these results will be
discussed in the developed version.

3. Experiments

We have fabricated a test circuit of the PWC model of
WTA-based paralleled buck converters as shown in Fig. 5
(a). After current-to-voltage conversion ( IVC ) the node
voltage vd j is applied to the comparator and WTA cir-
cuit. The WTA circuit is realized using digital elements
as shown in Fig. 5 (b). In this circuit, each node voltage
vd j is compared by the comparator and this circuit deter-
mines a term of the winner for each converter. Outputs of
the WTA circuit are sampled with period T and applied to
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Figure 5: (a) Test circuit of paralleled buck converter where
vd j = Vo − ri j. (b) WTA circuit: 071 (IVC), LM339 (com-
parator), 4066 (switch), 4013 (Flip-Flop), 4049 (Inverting
Converter), 4082 (AND Gate).

set terminal of the flip-flops. Outputs of the comparator C2

are applied to reset terminal. Outputs of the flip-flops con-
trol the switches S 1 to S N . Switching between Strategy 1
and Strategy 2 are realized easily by switches S d j and S f j:
connecting S d j and S f j to terminal 1 ( terminal 2), Strategy
1 ( Strategy 2 ) is realized.

Fig. 6 shows observed waveforms of the test circuit for
N = 3 where we can see that stable 3-SYN in CCM with
lower ripple can be confirmed in both Strategy 1 and 2.
Note that stable 3-SYN in Strategy 2 of (b’) is changed
from chaotic behavior of (b) in which unstable 3-SYN is
embedded ( corresponding to Fig. 3 (b) ).
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4. Conclusions

We have presented the PDCs that can be realized N-
SYN and ripple reduction for wide parameters region. Pa-
rameters condition for existence and stability of N-SYN is
shown. Presenting a test circuit, typical behavior is con-
firmed experimentally. Future problems include analysis
of bifurcation phenomena, design of practical circuits and
experiments of them.
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Figure 6: Observed waveforms of PWC model of par-
alleled buck converters for N = 3, L � 100[mA] and
r � 1[kΩ]. Horizontal: 0.2ms/div, Vertical: 5mA/div. (a)
3-SYN in CCM for (a−1, b−1) = (1.37, 4.33). Vi � 3.75[V],
Vo � 0.90[V], VTh � −3.00[V], T � 0.10[ms], J+ �
3.90[mA]. (b) Hyperchaos for (a−1, b−1) = (3.34, 2.61).
Vi � 3.33[V], Vo � 1.87[V], VTh � −3.0[V], T � 0.1[ms],
J+ � 4.87[mA]. (b’) 3-SYN in CCM for (a−1, b−1) =
(3.34, 2.61). Vi � 3.33[V], Vo � 1.87[V], VTh � 0[V],
T � 0.1[ms].
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